compound disturbance
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 10)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
pp. 107754632110418
Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Hossein Moeinkhah ◽  
Hossein Rahmani

Based on the super twisting concept, this article develops an integral sliding mode controller with nonlinear disturbance observer for position control and extending the traveling range of an initially curved micro-beam. The nonlinear damped model of the curved micro-beam is modeled based on the non-classical continuum theory. The single-mode assumption is used to transform the nonlinear governing PDE of the system into a nonlinear state-space form. The robust controller is designed to overcome the position control problem in the presence of non-parametric uncertainties and unknown non-symmetric input saturation due to the existing constraints in the electrostatic actuation. The effects of the uncertainties are considered as a compound disturbance term which can be estimated in finite time. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. Extensive simulation results clearly verified the effectiveness of the controller in position tracking and extending the traveling range of the initially curved micro-beam to the unstable zones under smooth control effort.


Author(s):  
Xiaolong WANG ◽  
Chong SUN ◽  
Qun FANG ◽  
Qi LI ◽  
Shuo SONG

In the presence of compound disturbances, a multi-spacecraft cooperative collision avoidance capture control method based on disturbance observer was proposed, which can solve the problem of low speed rolling non-cooperative target close-range capture in space. Firstly, a relative motion model of attitude and orbit coupling is established. Secondly, the disturbance observer is used to estimate and cancel the compound disturbance in the capture process. At the same time, the hyperquadric surfaces are used to describe the shape of space non-cooperative targets and capture spacecraft to establish a composite artificial potential field, and a robust control law with collision avoidance function is also designed. Finally, the stability of the controlled system is proved by using Lyapunov function, and the collision avoidance performance of the system is analyzed. Numerical simulations are carried out to evaluate the effectiveness of the proposed control scheme.


Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Mohammad Reza Gharib ◽  
Ali Heydari

This paper investigates a new disturbance observer based non-singular fast terminal sliding mode control technique for the path tracking and stabilization of non-linear second-order systems with compound disturbance. The compound disturbance is comprised of both parametric and non-parametric uncertainties. While warranting fast convergence rate and robustness, it also dominates the singularity and complex-value number issues associated with conventional terminal sliding mode control. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. The simulation results of two case studies, the velocity and path tracking of an autonomous underwater vehicle and the stabilization of a chaotic Φ6-Duffing oscillator, validate the efficacy of the proposed method.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 237
Author(s):  
Huifu Ji ◽  
Songyong Liu

Thin coal seam mining is a development direction to solve the problem of energy supply at this stage, which cannot be realized by small working space, low automation, and drilling deviation. In this paper, a nonlinear adaptive backstepping controller based on a disturbance observer is proposed and used on a coal auger for position tracking control to achieve directional drilling. Firstly, a nonlinear dynamic model for the deflection control mechanism is built with the consideration of parameter uncertainties and external disturbances. Then, the parameter uncertainty and external disturbance are regarded as a system compound disturbance. Furthermore, a disturbance observer is designed to estimate the system compound disturbance and a nonlinear adaptive backstepping controller was proposed to compensate the system compound disturbance. The upper bound of the compound disturbance, which can effectively reduce the chattering in the directional control process, cannot be obtained easily. A stability analysis of the DCM (deviation control mechanism) with the proposed controller is proved based on the Lyapunov theory. Finally, an electro-hydraulic servo displacement control experimental system with matlab xPC target rapid prototyping technology and a prototype experiment system is established to verify the effectiveness of the proposed control strategy. The experimental results indicate that the proposed controller can yield more satisfactory position tracking performance, such as parameter uncertainties and external disturbances, than the conventional proportion integral derivative (PID) controller and an adaptive backstepping controller. Using the control strategy, technical breakthrough on horizontal directional drilling can be realized for thin coal seam mining.


2020 ◽  
Vol 10 (20) ◽  
pp. 7175
Author(s):  
Zhongshi Wang ◽  
Dapeng Tian ◽  
Lei Shi ◽  
Jinghong Liu

The dynamics model used for inertially or strapdown inertially stabilized platforms is based on the rotor and motor load, and it either does not consider the stator or it implicitly assumes a fixed stator. It has been determined that vibrations occur in the system when a controller is used in strapdown inertially stabilized platforms with a light base support. As the system is also affected by multi-source disturbances, which are the main factors that affect the control accuracy. For the above two problems, this paper originally establishes a multi-body dynamics model including the controller. The composite controller not only suppresses the vibration successfully, but also greatly improves the disturbance compensation and tracking performance of the strapdown inertially stabilized platforms. Specifically, a modified feedback controller is used to suppress the vibrations analyzed according to the dynamics model. The friction feedforward and residual disturbance observer facilitates the design of compound disturbance compensation on the basis of composite hierarchical anti-disturbance control. To emphasize the advantages of strapdown inertially stabilized platforms, the feedforward controller employs feedforward angular velocity and acceleration. The results of the numerical analysis and experiments indicate that vibrations are successfully suppressed and tracking accuracy and disturbance isolation ability are improved.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Khanh G. Tran ◽  
Nam H. Nguyen ◽  
Phuoc D. Nguyen

In this paper, two controllers with a compound disturbance observer are proposed for a two-wheeled inverted robot (TWIR) with model uncertainty and unknown input disturbance. First, an equivalent linear model of the TWIR with uncertainty and input disturbance is proposed using the Taylor series expansion for the nonlinear model of the TWIR at an equilibrium point, in which the nonlinear part of the Taylor series and the model uncertainty are combined with unknown input disturbance as compound input disturbance. Then, the compound input disturbance is estimated by using the Newton method and reference model. As the estimated compound disturbance is used to compensate for the compound disturbance, the equivalent linear system becomes closely definite without compound input disturbance. Finally, two controllers are proposed using the equivalent linear system. Stability analysis of the proposed control methods is also given. To illustrate the proposed methods, some simulations for the TWIR are performed and compared with the existing methods. The main contribution of this work includes the following: (i) simple controllers based on compound input disturbance observer for trajectory tracking and balancing of TWIRs with unknown input disturbance and model uncertainty are proposed; (ii) the stability of proposed closed-loop control systems is proved; (iii) our proposed methods are simulated and compared with the existing methods.


2019 ◽  
Vol 30 (2) ◽  
Author(s):  
Justin S. Crotteau ◽  
Christopher R. Keyes ◽  
Sharon M. Hood ◽  
Andrew J. Larson

Sign in / Sign up

Export Citation Format

Share Document