lifting line method
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Haitong WANG ◽  
Yangang WANG ◽  
Siwei WANG ◽  
Fang ZHOU ◽  
Hanru LIU

2021 ◽  
Author(s):  
Andreas Büsken ◽  
Stefan Krüger

Abstract This paper presents a Combined Method for the calculation of propeller forces in inhomogeneous inflow. It consists of an extended Goldstein approach based on Lifting Line Theory and a Vortex Lattice Method. After a brief overview of both methods is given, the coupling strategy is described and the additional modifications are explained. A correction factor accounting for the vortex which develops under a separated and later reattached flow on the suction side of the propeller blade is implemented as the first modification. Further, the Lamb-Oseen vortex model is used for the vortices in the free vortex system of the propeller. Finally, some results achieved with the described method are presented and compared to measured values.


2021 ◽  
Vol 13 ◽  
pp. 175682932110168
Author(s):  
Hasan Karali ◽  
Gokhan Inalhan ◽  
M Umut Demirezen ◽  
M Adil Yukselen

In this work, a computationally efficient and high-precision nonlinear aerodynamic configuration analysis method is presented for both design optimization and mathematical modeling of small unmanned aerial vehicles. First, we have developed a novel nonlinear lifting line method which (a) provides very good match for the pre- and post-stall aerodynamic behavior in comparison to experiments and computationally intensive tools, (b) generates these results in order of magnitudes less time in comparison to computationally intensive methods such as computational fluid dynamics. This method is further extended to a complete configuration analysis tool that incorporates the effects of basic fuselage geometries. Moreover, a deep learning based surrogate model is developed using data generated by the new aerodynamic tool that can characterize the nonlinear aerodynamic performance of unmanned aerial vehicles. The major novel feature of this model is that it can predict the aerodynamic properties of unmanned aerial vehicle configurations by using only geometric parameters without the need for any special input data or pre-process phase as needed by other computational aerodynamic analysis tools. The obtained black-box function can calculate the performance of an unmanned aerial vehicle over a wide angle of attack range on the order of milliseconds, whereas computational fluid dynamics solutions take several days/weeks in a similar computational environment. The aerodynamic model predictions show an almost 1-1 coincidence with the numerical data even for configurations with different airfoils that are not used in model training. The developed model provides a highly capable aerodynamic solver for design optimization studies as demonstrated through an illustrative profile design example.


Author(s):  
José Rodolfo Chreim ◽  
Fillipe Rocha Esteves ◽  
Marcos de Mattos Pimenta ◽  
Gustavo R. S. Assi ◽  
João Lucas Dozzi Dantas ◽  
...  

2019 ◽  
pp. 70-73
Author(s):  
Chloé Duport ◽  
Jean-Baptiste Leroux ◽  
Kostia Roncin ◽  
Christian Jochum ◽  
Yves Parlier

As a part of the design and operation of kites as auxiliary propulsion of vessels, it is necessary to be able to quickly estimate the aerodynamic efforts along various trajectories. A 3D non-linear model based on the lifting line of Prandtl has been developed for this purpose. It allows these rapid calculations for wings with any laws for the dihedral angle, the twist, and the sweep angle, along the span, and for a general flight kinematic taking into account translation velocities and rotation rates. This model has been verified by comparison with 3D simulations performed with a Navier-Stokes solver. It gives satisfactory results in incidence and sideslip, with gaps of about 4% for forecasts lift. Special attention has been paid to the estimation of the accuracy of the provided numerical results.


Author(s):  
Hao Cheng ◽  
Hua Wang ◽  
Qingli Shi ◽  
Mengying Zhang

In the rapidly deploying process of the unmanned aerial vehicle with folding wings, the aerodynamic characteristics could be largely different owing to the effects of deformation rate and the aerodynamic interference. The investigation on the unsteady aerodynamics is of great significance for the stability analysis and control design. The lifting-line method and the vortex-lattice method are improved to calculate the unsteady aerodynamics in the morphing stage. It is validated that the vortex-lattice method predicts the unsteady lift coefficient more appropriately than the lifting-line method. Different tandem wing configurations with deployable wings are simulated with different deformation rates during the morphing stage by the vortex-lattice method. As results indicated, the unsteady lift coefficient and the induced drag of the fore wing rise with the deformation rate increasing, but it is reversed for the hind wing. Additionally, the unsteady lift coefficient of the tandem wing configuration performs well with a larger stagger, a larger magnitude of the gap and a larger wingspan of the fore wing; however, the total induced drag has a larger value for the configuration that the two lifting surfaces with the same wingspans are closer to each other.


Sign in / Sign up

Export Citation Format

Share Document