weak saddle
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 31 (02) ◽  
pp. 2150028
Author(s):  
Ting Yang

This paper investigates multistability in a 3D autonomous system with different types of chaotic attractors, which are not in the sense of Shil’nikov criteria. First, under some conditions, the system has infinitely many isolated equilibria. Moreover, all equilibria are nonhyperbolic and give the first Lyapunov coefficient. Furthermore, when all equilibria are weak saddle-foci, the system also has infinitely many chaotic attractors. Besides, the Lyapunov exponents spectrum and bifurcation diagram are given. Second, under another condition, all the equilibria constitute a curve and there exist infinitely many singular degenerated heteroclinic orbits. At the same time, the system can show infinitely many chaotic attractors.


2000 ◽  
Vol 61 (2) ◽  
pp. 201-206 ◽  
Author(s):  
K. R. Kazmi ◽  
S. Khan

We establish an existence theorem for weak saddle points of a vector valued function by making use of a vector variational inequality and convex functions.


Sign in / Sign up

Export Citation Format

Share Document