tumor immunosuppression
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 37)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 22 (24) ◽  
pp. 13431
Author(s):  
Giacomo Casati ◽  
Laura Giunti ◽  
Anna Lisa Iorio ◽  
Arianna Marturano ◽  
Luisa Galli ◽  
...  

Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy. Due to the high recurrence of GBM after treatment, the understanding of the chemoresistance phenomenon and how to stimulate the antitumor immune response in this pathology is crucial. The deregulation of the Hippo pathway is involved in tumor genesis, chemoresistance and immunosuppressive nature of GBM. This pathway is an evolutionarily conserved signaling pathway with a kinase cascade core, which controls the translocation of YAP (Yes-Associated Protein)/TAZ (Transcriptional Co-activator with PDZ-binding Motif) into the nucleus, leading to regulation of organ size and growth. With this review, we want to highlight how chemoresistance and tumor immunosuppression work in GBM and how the Hippo pathway has a key role in them. We linger on the role of the Hippo pathway evaluating the effect of its de-regulation among different human cancers. Moreover, we consider how different pathways are cross-linked with the Hippo signaling in GBM genesis and the hypothetical mechanisms responsible for the Hippo pathway activation in GBM. Furthermore, we describe various drugs targeting the Hippo pathway. In conclusion, all the evidence described largely support a strong involvement of the Hippo pathway in gliomas progression, in the activation of chemoresistance mechanisms and in the development of an immunosuppressive microenvironment. Therefore, this pathway is a promising target for the treatment of high grade gliomas and in particular of GBM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolong Tang ◽  
Xue Sui ◽  
Liang Weng ◽  
Yongshuo Liu

The transcription factor Snail1, a key inducer of epithelial-mesenchymal transition (EMT), plays a critical role in tumor metastasis. Its stability is strictly controlled by multiple intracellular signal transduction pathways and the ubiquitin-proteasome system (UPS). Increasing evidence indicates that methylation and acetylation of Snail1 also affects tumor metastasis. More importantly, Snail1 is involved in tumor immunosuppression by inducing chemokines and immunosuppressive cells into the tumor microenvironment (TME). In addition, some immune checkpoints potentiate Snail1 expression, such as programmed death ligand 1 (PD-L1) and T cell immunoglobulin 3 (TIM-3). This mini review highlights the pathways and molecules involved in maintenance of Snail1 level and the significance of Snail1 in tumor immune evasion. Due to the crucial role of EMT in tumor metastasis and tumor immunosuppression, comprehensive understanding of Snail1 function may contribute to the development of novel therapeutics for cancer.


Author(s):  
Xiaopei Hao ◽  
Guangshun Sun ◽  
Yao Zhang ◽  
Xiangyi Kong ◽  
Dawei Rong ◽  
...  

Immune associated cells in the microenvironment have a significant impact on the development and progression of hepatocellular carcinoma (HCC) and have received more and more attention. Different types of immune-associated cells play different roles, including promoting/inhibiting HCC and several different types that are controversial. It is well known that immune escape of HCC has become a difficult problem in tumor therapy. Therefore, in recent years, a large number of studies have focused on the immune microenvironment of HCC, explored many mechanisms worth identifying tumor immunosuppression, and developed a variety of immunotherapy methods as targets, laying the foundation for the final victory in the fight against HCC. This paper reviews recent studies on the immune microenvironment of HCC that are more reliable and important, and provides a more comprehensive view of the investigation of the immune microenvironment of HCC and the development of more immunotherapeutic approaches based on the relevant summaries of different immune cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaobao Liu ◽  
Yang Yang ◽  
Cheng Chen ◽  
Ling Li ◽  
Jingquan Li ◽  
...  

AbstractAlthough psycho-social stress is a well-known factor that contributes to the development of cancer, it remains largely unclear whether and how environmental eustress influences malignant diseases and regulates cancer-related therapeutic responses. Using an established eustress model, we demonstrate that mice living in an enriched environment (EE) are protected from carcinogen-induced liver neoplasia and transplantable syngeneic liver tumors, owning to a CD8+ T cell-dependent tumor control. We identify a peripheral Neuro-Endocrine-Immune pathway in eustress, including Sympathetic nervous system (SNS)/β-adrenergic receptors (β-ARs)/CCL2 that relieves tumor immunosuppression and overcomes PD-L1 resistance to immunotherapy. Notably, EE activates peripheral SNS and β-ARs signaling in tumor cells and tumor infiltrated myeloid cells, leading to suppression of CCL2 expression and activation of anti-tumor immunity. Either blockade of CCL2/CCR2 or β-AR signaling in EE mice lose the tumor protection capability. Our study reveales that environmental eustress via EE stimulates anti-tumor immunity, resulting in more efficient tumor control and a better outcome of immunotherapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Qi ◽  
Feiyang Jin ◽  
Yuchan You ◽  
Yan Du ◽  
Di Liu ◽  
...  

AbstractSome specific chemotherapeutic drugs are able to enhance tumor immunogenicity and facilitate antitumor immunity by inducing immunogenic cell death (ICD). However, tumor immunosuppression induced by the adenosine pathway hampers this effect. In this study, E-selectin-modified thermal-sensitive micelles are designed to co-deliver a chemotherapeutic drug (doxorubicin, DOX) and an A2A adenosine receptor antagonist (SCH 58261), which simultaneously exhibit chemo-immunotherapeutic effects when applied with microwave irradiation. After intravenous injection, the fabricated micelles effectively adhere to the surface of leukocytes in peripheral blood mediated by E-selectin, and thereby hitchhiking with leukocytes to achieve a higher accumulation at the tumor site. Further, local microwave irradiation is applied to induce hyperthermia and accelerates the release rate of drugs from micelles. Rapidly released DOX induces tumor ICD and elicits tumor-specific immunity, while SCH 58261 alleviates immunosuppression caused by the adenosine pathway, further enhancing DOX-induced antitumor immunity. In conclusion, this study presents a strategy to increase the tumor accumulation of drugs by hitchhiking with leukocytes, and the synergistic strategy of chemo-immunotherapy not only effectively arrested primary tumor growth, but also exhibited superior effects in terms of antimetastasis, antirecurrence and antirechallenge.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fan Yang ◽  
Zhenqiang He ◽  
Hao Duan ◽  
Duo Zhang ◽  
Juehui Li ◽  
...  

AbstractImmunologically-cold tumors including glioblastoma (GBM) are refractory to checkpoint blockade therapy, largely due to extensive infiltration of immunosuppressive macrophages (Mϕs). Consistent with a pro-tumor role of IL-6 in alternative Mϕs polarization, we here show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy reduces CD40 expression in GBM-associated Mϕs. We identify a Stat3/HIF-1α-mediated axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mϕs. Combination of IL-6 inhibition with CD40 stimulation reverses Mϕ-mediated tumor immunosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two syngeneic GBM models, particularly inducing complete regression of GL261 tumors after checkpoint blockade. Thus, antibody cocktail-based immunotherapy that combines checkpoint blockade with dual-targeting of IL-6 and CD40 may offer exciting opportunities for GBM and other solid tumors.


Sign in / Sign up

Export Citation Format

Share Document