compactly supported function
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 26 (1) ◽  
pp. 94-115
Author(s):  
Bahar Karaman

This research describes an efficient numerical method based on Wendland’s compactly supported functions to simulate the time-space fractional coupled nonlinear Schrödinger (TSFCNLS) equations. Here, the time and space fractional derivatives are considered in terms of Caputo and Conformable derivatives, respectively. The present numerical discussion is based on the following ways: we first approximate the Caputo fractional derivative of the proposed equation by a scheme order O(∆t2−α), 0 < α < 1 and then the Crank-Nicolson scheme is employed in the mentioned equation to discretize the equations. Second, applying a linear difference scheme to avoid solving nonlinear systems. In this way, we have a linear, suitable calculation scheme. Then, the conformable fractional derivatives of the Wendland’s compactly supported functions are established for the scheme. The stability analysis of the suggested scheme is also examined in a similar way to the classic Von-Neumann technique for the governing equations. The efficiency and accuracy of the present method are verified by solving two examples.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hiroshi Fujiwara ◽  
Kamran Sadiq ◽  
Alexandru Tamasan

<p style='text-indent:20px;'>In two dimensions, we consider the problem of inversion of the attenuated <inline-formula><tex-math id="M2">\begin{document}$ X $\end{document}</tex-math></inline-formula>-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with <inline-formula><tex-math id="M3">\begin{document}$ A $\end{document}</tex-math></inline-formula>-analytic functions in the sense of Bukhgeim.</p>


2016 ◽  
Vol 13 (Supp. 1) ◽  
pp. 1641002
Author(s):  
Michel Cahen ◽  
Thibaut Grouy ◽  
Simone Gutt

Our project is to define Radon-type transforms in symplectic geometry. The chosen framework consists of symplectic symmetric spaces whose canonical connection is of Ricci-type. They can be considered as symplectic analogues of the spaces of constant holomorphic curvature in Kählerian Geometry. They are characterized amongst a class of symplectic manifolds by the existence of many totally geodesic symplectic submanifolds. We present a particular class of Radon type transforms, associating to a smooth compactly supported function on a homogeneous manifold [Formula: see text], a function on a homogeneous space [Formula: see text] of totally geodesic submanifolds of [Formula: see text], and vice versa. We describe some spaces [Formula: see text] and [Formula: see text] in such Radon-type duality with [Formula: see text] a model of symplectic symmetric space with Ricci-type canonical connection and [Formula: see text] an orbit of totally geodesic symplectic submanifolds.


2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Zhihua Zhang

For a smooth bivariate function defined on a general domain with arbitrary shape, it is difficult to do Fourier approximation or wavelet approximation. In order to solve these problems, in this paper, we give an extension of the bivariate function on a general domain with arbitrary shape to a smooth, periodic function in the whole space or to a smooth, compactly supported function in the whole space. These smooth extensions have simple and clear representations which are determined by this bivariate function and some polynomials. After that, we expand the smooth, periodic function into a Fourier series or a periodic wavelet series or we expand the smooth, compactly supported function into a wavelet series. Since our extensions are smooth, the obtained Fourier coefficients or wavelet coefficients decay very fast. Since our extension tools are polynomials, the moment theorem shows that a lot of wavelet coefficients vanish. From this, with the help of well-known approximation theorems, using our extension methods, the Fourier approximation and the wavelet approximation of the bivariate function on the general domain with small error are obtained.


2013 ◽  
Vol 06 (01) ◽  
pp. 1350011 ◽  
Author(s):  
Lasse Hjuler Christiansen ◽  
Ole Christensen

Let g be any real-valued, bounded and compactly supported function, whose integer-translates {Tkg}k∈ℤ form a partition of unity. Based on a new construction of dual windows associated with Gabor frames generated by g, we present a method to explicitly construct dual pairs of Gabor frames. This new method of construction is based on a family of polynomials which is closely related to the Daubechies polynomials, used in the construction of compactly supported wavelets. For any k ∈ ℕ ∪ {∞} we consider the Meyer scaling functions and use these to construct compactly supported windows g ∈ Ck(ℝ) associated with a family of smooth compactly supported dual windows [Formula: see text]. For any n ∈ ℕ the pair of dual windows g, hn ∈ Ck(ℝ) have compact support in the interval [-2/3, 2/3] and share the property of being constant on half the length of their support. We therefore obtain arbitrary smoothness of the dual pair of windows g, hn without increasing their support.


Author(s):  
VICTOR G. ZAKHAROV

In this paper, we present an explicit method to construct directly in the x-domain compactly supported scaling functions corresponding to the wavelets adapted to a sum of differential operators with constant coefficients. Here the adaptation to an operator is taken to mean that the wavelets give a diagonal form of the operator matrix. We show that the biorthogonal compactly supported wavelets adapted to a sum of differential operators with constant coefficients are closely connected with the representation of the null-space of the adjoint operator by the corresponding scaling functions. We consider the necessary and sufficient conditions (actually the Strang–Fix conditions) on integer shifts of a compactly supported function (distribution) f ∈ S'(ℝ) to represent exactly any function from the null-space of a sum of differential operators with constant coefficients.


2010 ◽  
Vol 27 (2) ◽  
pp. 141 ◽  
Author(s):  
Hsin M. Shieh ◽  
Yu-Ching Hsu ◽  
Charles L. Byrne ◽  
Michael A. Fiddy

Author(s):  
CARLOS A. CABRELLI ◽  
SIGRID B. HEINEKEN ◽  
URSULA M. MOLTER

Let φ : ℝd → ℂ be a compactly supported function which satisfies a refinement equation of the form [Formula: see text] where Γ ⊂ ℝd is a lattice, Λ is a finite subset of Γ, and A is a dilation matrix. We prove, under the hypothesis of linear independence of the Γ-translates of φ, that there exists a correspondence between the vectors of the Jordan basis of a finite submatrix of L = [cAi-j]i,j∈Γ and a finite-dimensional subspace [Formula: see text] in the shift-invariant space generated by φ. We provide a basis of [Formula: see text] and show that its elements satisfy a property of homogeneity associated to the eigenvalues of L. If the function φ has accuracy κ, this basis can be chosen to contain a basis for all the multivariate polynomials of degree less than κ. These latter functions are associated to eigenvalues that are powers of the eigenvalues of A-1. Furthermore we show that the dimension of [Formula: see text] coincides with the local dimension of φ, and hence, every function in the shift-invariant space generated by φ can be written locally as a linear combination of translates of the homogeneous functions.


Sign in / Sign up

Export Citation Format

Share Document