edge classification
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Gage DeZoort ◽  
Savannah Thais ◽  
Javier Duarte ◽  
Vesal Razavimaleki ◽  
Markus Atkinson ◽  
...  

AbstractRecent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited to address a variety of reconstruction problems in high-energy particle physics. In particular, particle tracking data are naturally represented as a graph by identifying silicon tracker hits as nodes and particle trajectories as edges, given a set of hypothesized edges, edge-classifying GNNs identify those corresponding to real particle trajectories. In this work, we adapt the physics-motivated interaction network (IN) GNN toward the problem of particle tracking in pileup conditions similar to those expected at the high-luminosity Large Hadron Collider. Assuming idealized hit filtering at various particle momenta thresholds, we demonstrate the IN’s excellent edge-classification accuracy and tracking efficiency through a suite of measurements at each stage of GNN-based tracking: graph construction, edge classification, and track building. The proposed IN architecture is substantially smaller than previously studied GNN tracking architectures; this is particularly promising as a reduction in size is critical for enabling GNN-based tracking in constrained computing environments. Furthermore, the IN may be represented as either a set of explicit matrix operations or a message passing GNN. Efforts are underway to accelerate each representation via heterogeneous computing resources towards both high-level and low-latency triggering applications.


2021 ◽  
Vol 13 (18) ◽  
pp. 3585
Author(s):  
Zhiyong Xu ◽  
Weicun Zhang ◽  
Tianxiang Zhang ◽  
Zhifang Yang ◽  
Jiangyun Li

Semantic segmentation for remote sensing images (RSIs) is widely applied in geological surveys, urban resources management, and disaster monitoring. Recent solutions on remote sensing segmentation tasks are generally addressed by CNN-based models and transformer-based models. In particular, transformer-based architecture generally struggles with two main problems: a high computation load and inaccurate edge classification. Therefore, to overcome these problems, we propose a novel transformer model to realize lightweight edge classification. First, based on a Swin transformer backbone, a pure Efficient transformer with mlphead is proposed to accelerate the inference speed. Moreover, explicit and implicit edge enhancement methods are proposed to cope with object edge problems. The experimental results evaluated on the Potsdam and Vaihingen datasets present that the proposed approach significantly improved the final accuracy, achieving a trade-off between computational complexity (Flops) and accuracy (Efficient-L obtaining 3.23% mIoU improvement on Vaihingen and 2.46% mIoU improvement on Potsdam compared with HRCNet_W48). As a result, it is believed that the proposed Efficient transformer will have an advantage in dealing with remote sensing image segmentation problems.


2021 ◽  
Author(s):  
Ziqi Zhou ◽  
Kewu Peng ◽  
Jian Song ◽  
Zhitong He

Author(s):  
Jingwei Qu ◽  
Haibin Ling ◽  
Chenrui Zhang ◽  
Xiaoqing Lyu ◽  
Zhi Tang

Graph matching aims at establishing correspondence between node sets of given graphs while keeping the consistency between their edge sets. However, outliers in practical scenarios and equivalent learning of edge representations in deep learning methods are still challenging. To address these issues, we present an Edge Attention-adaptive Graph Matching (EAGM) network and a novel description of edge features. EAGM transforms the matching relation between two graphs into a node and edge classification problem over their assignment graph. To explore the potential of edges, EAGM learns edge attention on the assignment graph to 1) reveal the impact of each edge on graph matching, as well as 2) adjust the learning of edge representations adaptively. To alleviate issues caused by the outliers, we describe an edge by aggregating the semantic information over the space spanned by the edge. Such rich information provides clear distinctions between different edges (e.g., inlier-inlier edges vs. inlier-outlier edges), which further distinguishes outliers in the view of their associated edges. Extensive experiments demonstrate that EAGM achieves promising matching quality compared with state-of-the-arts, on cases both with and without outliers. Our source code along with the experiments is available at https://github.com/bestwei/EAGM.


Author(s):  
Héctor Andrade-Loarca ◽  
Gitta Kutyniok ◽  
Ozan Öktem

Semantic edge detection has recently gained a lot of attention as an image-processing task, mainly because of its wide range of real-world applications. This is based on the fact that edges in images contain most of the semantic information. Semantic edge detection involves two tasks, namely pure edge detection and edge classification. Those are in fact fundamentally distinct in terms of the level of abstraction that each task requires. This fact is known as the distracted supervision paradox and limits the possible performance of a supervised model in semantic edge detection. In this work, we will present a novel hybrid method that is based on a combination of the model-based concept of shearlets, which provides probably optimally sparse approximations of a model class of images, and the data-driven method of a suitably designed convolutional neural network. We show that it avoids the distracted supervision paradox and achieves high performance in semantic edge detection. In addition, our approach requires significantly fewer parameters than a pure data-driven approach. Finally, we present several applications such as tomographic reconstruction and show that our approach significantly outperforms former methods, thereby also indicating the value of such hybrid methods for biomedical imaging.


Author(s):  
Stelios Neophytou ◽  
Pavlos Tsiantis ◽  
Ilias Alexopoulos ◽  
Ioannis Kyriakides ◽  
Camille de Veyrac ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document