borel functions
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Habib Rebei ◽  
Slaheddine Wannes

We introduce the quadratic analogue of the Bogolyubov endomorphisms of the canonical commutation relations (CCR) associated with the re-normalized square of white noise algebra (RSWN-algebra). We focus on the structure of a subclass of these endomorphisms: each of them is uniquely determined by a quadruple [Formula: see text], where [Formula: see text] are linear transformations from a test-function space [Formula: see text] into itself, while [Formula: see text] is anti-linear on [Formula: see text] and [Formula: see text] is real. Precisely, we prove that [Formula: see text] and [Formula: see text] are uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text], into itself. Under some additional analytic conditions on [Formula: see text] and [Formula: see text], we discover that we have only two equivalent classes of Bogolyubov endomorphisms, one of them corresponds to the case [Formula: see text] and the other corresponds to the case [Formula: see text]. Finally, we close the paper by building some examples in one and multi-dimensional cases.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3211
Author(s):  
Patrizia Berti ◽  
Luca Pratelli ◽  
Pietro Rigo

Let S be a Borel subset of a Polish space and F the set of bounded Borel functions f:S→R. Let an(·)=P(Xn+1∈·∣X1,…,Xn) be the n-th predictive distribution corresponding to a sequence (Xn) of S-valued random variables. If (Xn) is conditionally identically distributed, there is a random probability measure μ on S such that ∫fdan⟶a.s.∫fdμ for all f∈F. Define Dn(f)=dn∫fdan−∫fdμ for all f∈F, where dn>0 is a constant. In this note, it is shown that, under some conditions on (Xn) and with a suitable choice of dn, the finite dimensional distributions of the process Dn=Dn(f):f∈F stably converge to a Gaussian kernel with a known covariance structure. In addition, Eφ(Dn(f))∣X1,…,Xn converges in probability for all f∈F and φ∈Cb(R).


2021 ◽  
pp. 51-79
Author(s):  
James Davidson

This chapter examines the concept of a measure space. The main topic is the extension theorem and its ramifications. Nonmeasurable sets are illustrated, and then measure concepts for product spaces introduced. Other topics include measurability under transformations, and Borel functions.


2021 ◽  
Vol 288 ◽  
pp. 107474
Author(s):  
T.H. Steele
Keyword(s):  

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1848
Author(s):  
Antonio Avilés López ◽  
José Miguel Zapata García

We establish a connection between random set theory and Boolean valued analysis by showing that random Borel sets, random Borel functions, and Markov kernels are respectively represented by Borel sets, Borel functions, and Borel probability measures in a Boolean valued model. This enables a Boolean valued transfer principle to obtain random set analogues of available theorems. As an application, we establish a Boolean valued transfer principle for large deviations theory, which allows for the systematic interpretation of results in large deviations theory as versions for Markov kernels. By means of this method, we prove versions of Varadhan and Bryc theorems, and a conditional version of Cramér theorem.


2020 ◽  
Vol 21 (01) ◽  
pp. 2050021
Author(s):  
Vassilios Gregoriades ◽  
Takayuki Kihara ◽  
Keng Meng Ng

We give a partial answer to an important open problem in descriptive set theory, the Decomposability Conjecture for Borel functions on an analytic subset of a Polish space to a separable metrizable space. Our techniques employ deep results from effective descriptive set theory and recursion theory. In fact it is essential to extend several prominent results in recursion theory (e.g. the Shore–Slaman Join Theorem) to the setting of Polish spaces. As a by-product we give both positive and negative results on the Martin Conjecture on the degree preserving Borel functions between Polish spaces. Additionally we prove results about the transfinite version as well as the computable version of the Decomposability Conjecture.


Author(s):  
Habib Rebei ◽  
Luigi Accardi ◽  
Hajer Taouil

We introduce the quadratic analog of the tensor Bogolyubov representation of the CCR. Our main result is the determination of the structure of these maps: each of them is uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text] into itself whose inverses induce transformations that map the Lebesgue measure [Formula: see text] into measures [Formula: see text] absolutely continuous with respect to it. Furthermore, the Radon–Nikodyn derivatives [Formula: see text], of these measures with respect to [Formula: see text], must satisfy the relation [Formula: see text] for [Formula: see text]-almost every [Formula: see text]. This makes a surprising bridge with the hyperbolic sine and cosine defining the structure of usual (i.e. first-order) Bogolyubov transformations. The reason of the surprise is that the linear and quadratic commutation relations are completely different.


2019 ◽  
Vol 371 (11) ◽  
pp. 7885-7923 ◽  
Author(s):  
Takayuki Kihara ◽  
Antonio Montalbán
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document