choice rule
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 5 (4) ◽  
pp. 193
Author(s):  
Dun-Gang Li ◽  
Jun-Liang Fu ◽  
Fan Yang ◽  
Xiao-Xiao Li

In this paper, we study an inverse problem to identify the initial value problem of the homogeneous Rayleigh–Stokes equation for a generalized second-grade fluid with the Riemann–Liouville fractional derivative model. This problem is ill posed; that is, the solution (if it exists) does not depend continuously on the data. We use the Landweber iterative regularization method to solve the inverse problem. Based on a conditional stability result, the convergent error estimates between the exact solution and the regularization solution by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule are given. Some numerical experiments are performed to illustrate the effectiveness and stability of this method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Dinh Long ◽  
Ho Thi Kim Van ◽  
Ho Duy Binh ◽  
Reza Saadati

AbstractThe main target of this paper is to study a problem of recovering a spherically symmetric domain with fractional derivative from observed data of nonlocal type. This problem can be established as a new boundary value problem where a Cauchy condition is replaced with a prescribed time average of the solution. In this work, we set some of the results above existence and regularity of the mild solutions of the proposed problem in some suitable space. Next, we also show the ill-posedness of our problem in the sense of Hadamard. The regularized solution is given by the fractional Tikhonov method and convergence rate between the regularized solution and the exact solution under a priori parameter choice rule and under a posteriori parameter choice rule.


Author(s):  
Mihir Bhattacharya ◽  
Saptarshi Mukherjee ◽  
Ruhi Sonal

Author(s):  
Battal Doğan ◽  
Serhat Doğan ◽  
Kemal Yıldız

Each capacity-filling and substitutable choice rule is known to have a maximizer-collecting representation: There exists a list of priority orderings such that from each choice set that includes more alternatives than the capacity, the choice is the union of the priority orderings’ maximizers. We introduce the notion of a critical set and constructively prove that the number of critical sets for a choice rule determines its smallest-size maximizer-collecting representation. We show that responsive choice rules require the maximal number of priority orderings in their smallest-size maximizer-collecting representations among all capacity-filling and substitutable choice rules. We also analyze maximizer-collecting choice rules in which the number of priority orderings equals the capacity. We show that if the capacity is greater than three and the number of alternatives exceeds the capacity by at least two, then no capacity-filling and substitutable choice rule has a maximizer-collecting representation of the size equal to the capacity.


2021 ◽  
Vol 385 ◽  
pp. 113200
Author(s):  
Pascual Fernández ◽  
Blas Pelegrín ◽  
Algirdas Lančinskas ◽  
Julius Žilinskas

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Nhat Huynh ◽  
Nguyen Hoang Luc ◽  
Dumitru Baleanu ◽  
Le Dinh Long

AbstractThis article is devoted to the study of the source function for the Caputo–Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document