phoronopsis harmeri
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

EvoDevo ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ludwik Gąsiorowski ◽  
Andreas Hejnol

2020 ◽  
Author(s):  
Ludwik Gąsiorowski ◽  
Andreas Hejnol

Abstract Background: Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid Phoronopsis harmeri. Results: We identified sequences of eight Hox genes in the transcriptome of Ph. harmeri and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. In the investigated initial larval stages the Hox genes are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that represent rudiments of the adult worm. Additionally, we found that certain head-specific transcription factors are expressed in the oral hood, apical organ, preoral coelom, anterior digestive system and developing larval tentacles, anterior to the Hox-expressing territories. Conclusions: The lack of Hox gene expression during early development of Ph. harmeri indicates that the larval body develops without positional information from the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox gene expression can also be a consequence of the actinotrocha representing a “head larva”, which is composed of the most anterior body region that is devoid of Hox gene expression. Such interpretation is further supported by the expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed development of the trunk rudiment in the ancestral phoronid larva.


2019 ◽  
Author(s):  
Ludwik Gąsiorowski ◽  
Andreas Hejnol

Abstract Background: Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid Phoronopsis harmeri.Results: We identified sequences of 8 Hox genes in the transcriptome of Ph. harmeri and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. The Hox genes are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that represent rudiments of the adult worm, which emerges through the process of drastic metamorphosis. Additionally, we found that certain head-specific transcription factors are expressed in the oral hood, apical organ, anterior digestive system and developing larval tentacles, anterior to the Hox-expressing territories.Conclusions: The lack of Hox gene expression during early development of Ph. harmeri indicates that the larval body develops without positional information of the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox gene expression can also be a consequence of the actinotrocha representing a “head larva”, which is composed of the most anterior body region that is devoid of Hox gene expression, which is supported by the expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed development of the trunk rudiment in the ancestral phoronid larva.


EvoDevo ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Carmen Andrikou ◽  
Yale J. Passamaneck ◽  
Chris J. Lowe ◽  
Mark Q. Martindale ◽  
Andreas Hejnol

Abstract Background Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers during the development of the protostomic phoronid Phoronopsis harmeri. Results The transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Furthermore, six3/6, usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, brachyury, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids. Conclusions Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid Ph. harmeri also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.


2019 ◽  
Author(s):  
Ludwik Gąsiorowski ◽  
Andreas Hejnol

AbstractBackgroundPhoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid Phoronopsis harmeri.ResultsWe identified sequences of 8 Hox genes in the transcriptome of P. harmeri and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. The Hox genes are expressed in the metasomal sac, posterior mesoderm and junction between midgut and hindgut - structures that represent rudiments of the adult worm, which emerges through the process of drastic metamorphosis. Additionally, two Hox genes are expressed in the posterior telotroch, which develops in the later larval stages.ConclusionsThe lack of Hox gene expression during early development of P. harmeri indicates that the larval body develops without positional information of the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral, direct life cycle of phoronids. Accordingly, the specific actinotrocha larva found only in Phoronida, would represent an evolutionary novelty, for which an alternative molecular mechanism of antrerior-posterior patterning was recruited. Another explanation of the observed Hox gene expression is that the actinotrocha represents a “head larva”, which is composed of the most anterior body region that is devoid of Hox gene expression. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. Future investigation on head-specific genes expression is needed to test this hypothesis.


2019 ◽  
Author(s):  
Carmen Andrikou ◽  
Yale J. Passamaneck ◽  
Chris J. Lowe ◽  
Mark Q. Martindale ◽  
Andreas Hejnol

AbstractBackgroundAnswering the question how conserved patterning systems are across evolutionary lineages requires a broad taxon sampling. Phoronid development has previously been studied using fate mapping and morphogenesis, yet molecular descriptions are missing. Here we report the expression patterns of the evolutionarily conserved anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers in the phoronid Phoronopsis harmeri.ResultsThe transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Surprisingly, brachyury, an evolutionary conserved transcription factor often associated with gastrulation movements and patterning of the mouth and hindgut, seems to be unrelated with gastrulation and mouth patterning in phoronids. Furthermore, six3/6, a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria.ConclusionsOur comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarities to rhynchonelliform brachiopods. Despite these similarities, the phoronid P. harmeri shows also particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.


2013 ◽  
Vol 27 (6) ◽  
pp. 622 ◽  
Author(s):  
Elena N. Temereva ◽  
Tatiana V. Neretina

Phoronids can be a major component of benthic and planktonic marine communities. Currently, the phoronid world fauna includes ten recognised species, known from adults; however, at least 32 larval forms have been described or documented. This study examined the morphology and 18S rRNA and 28S rRNA genes of two phoronid larvae abundant in Vostok Bay, Sea of Japan. One type was identified as the larval stage of Phoronopsis harmeri, although some distinctive features of this larva differ from the typical description. The morphological and molecular characteristics of the other larva did not match those of described species. According to our morphological results, this second actinotroch larva belongs to the genus Phoronis, but differs morphologically and molecularly from all the known species in the genus, all of which are represented in GenBank for the markers employed here. Taken together, our data suggest that the second actinotroch larva belongs to an undescribed phoronid species. The adult form of this actinotroch has never been identified, but our data suggest a close relationship with Phoronis pallida. The existence of a putative new phoronid species is also confirmed by presence of competent phoronid larvae, which are found in different aquatic areas, have a unique set of morphological features, and whose belonging is still not established.


Sign in / Sign up

Export Citation Format

Share Document