detention basins
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Aaron Akin ◽  
Jon Hathaway ◽  
Anahita Khojandi

Dry extended detention basins are static stormwater infrastructure, unable to adapt to shifts in water quality caused by urbanization in their source watersheds or long-term changes in rainfall patterns. As...


Author(s):  
Seol Jeon ◽  
Siyeon Kim ◽  
Moonyoung Lee ◽  
Heejin An ◽  
Kichul Jung ◽  
...  

The quality of water has deteriorated due to urbanization and the occurrence of urban stormwater runoff. To solve this problem, this study investigated the pollutant reduction effects from the geometric and hydrological factors of green infrastructures (GIs) to more accurately design GI models, and evaluated the factors that are required for such a design. Among several GIs, detention basins and retention ponds were evaluated. This study chose the inflow, outflow, total suspended solids (TSS), total phosphorus (TP), watershed area, GI area (bottom area in detention basins and permanent pool surface area in retention ponds), and GI volume (in both detention basins and retention ponds) for analysis and applied both ordinary least squares (OLS) regression and multiple linear regression (MLR). The geometric factors do not vary within each GI, but there may be a bias due to the number of stormwater events. To solve this problem, three methods that involved randomly extracting data with a certain range and excluding outliers were applied to the models. The accuracies of these OLS and MLR models were analyzed through the percentage bias (PBIAS), Nash-Sutcliffe efficiency (NSE), and RMSE-observations standard deviation ratio (RSR). The results of this study suggest that models which consider the influent concentration combined with the hydrological and GI geometric parameters have better correlations than models that consider only a single parameter.


2021 ◽  
Vol 25 (7) ◽  
pp. 4231-4242
Author(s):  
Salvatore Manfreda ◽  
Domenico Miglino ◽  
Cinzia Albertini

Abstract. Detention dams are one of the most effective practices for flood mitigation. Therefore, the impact of these structures on the basin hydrological response is critical for flood management and the design of flood control structures. With the aim of providing a mathematical framework to interpret the effect of flow control systems on river basin dynamics, the functional relationship between inflows and outflows is investigated and derived in a closed form. This allowed the definition of a theoretically derived probability distribution of the peak outflows from in-line detention basins. The model has been derived assuming a rectangular hydrograph shape with a fixed duration and a random flood peak. In the present study, the undisturbed flood peaks are assumed to be Gumbel distributed, but the proposed mathematical formulation can be extended to any other flood-peak probability distribution. A sensitivity analysis of parameters highlighted the influence of detention basin capacity and rainfall event duration on flood mitigation on the probability distribution of the peak outflows. The mathematical framework has been tested using for comparison a Monte Carlo simulation where most of the simplified assumptions used to describe the dam behaviours are removed. This allowed demonstrating that the proposed formulation is reliable for small river basins characterized by an impulsive response. The new approach for the quantification of flood peaks in river basins characterized by the presence of artificial detention basins can be used to improve existing flood mitigation practices and support the design of flood control systems and flood risk analyses.


2021 ◽  
Vol 597 ◽  
pp. 126201
Author(s):  
Kun Wang ◽  
Zongzhi Wang ◽  
Kelin Liu ◽  
Liang Cheng ◽  
Ying Bai ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4678
Author(s):  
Yi-Jia Xing ◽  
Tse-Lun Chen ◽  
Meng-Yao Gao ◽  
Si-Lu Pei ◽  
Wei-Bin Pan ◽  
...  

Green infrastructure practices could provide innovative solutions for on-site stormwater management and runoff pollution control, which could relieve the stress of nonpoint pollution resulting from heavy rainfall events. In this study, the performance and cost-effectiveness of six green infrastructure practices, namely, green roofs, rain gardens, pervious surfaces, swales, detention basins, and constructed wetlands, were investigated. The comprehensive performance evaluation in terms of the engineering performance, environmental impact, and economic cost was determined in the proposed engineering–environmental–economic (3E) triangle model. The results revealed that these green infrastructure practices were effective for stormwater management in terms of runoff attenuation, peak flow reduction and delay, and pollutant attenuation. It was suggested that for pollution control, detention basins can efficiently reduce the total suspended solids, total nitrogen, total phosphorus, and lead. The implementation of detention basins is highly recommended due to their higher engineering performance and lower environmental impact and economic cost. A case study of a preliminary cost–benefit analysis of green infrastructure practice exemplified by the Pearl River Delta in China was addressed. It suggested that green infrastructure was cost-effective in stormwater management in this area, which would be helpful for sustaining healthy urban watersheds.


2021 ◽  
Author(s):  
Salvatore Manfreda ◽  
Domenico Miglino ◽  
Cinzia Albertini

Abstract. Detention dams are one of the most effective practices for flood mitigation. Therefore, the impact of these structures on the basin hydrological response is critical for flood management and the design of flood control structures. With the aim to provide a mathematical framework to interpret the effect of flow control systems on river basin dynamics, the functional relationship between inflows and outflows is investigated and derived in a closed-form. This allowed the definition of a theoretically derived probability distribution of the peak outflows from in-line detention basins. The model has been derived assuming a rectangular hydrograph shape with a fixed duration, and a random flood peak. In the present study, the undisturbed flood distribution is assumed to be Gumbel distributed, but the proposed mathematical formulation can be extended to any other flood-peak probability distribution. A sensitivity analysis of parameters highlighted the influence of detention basin capacity and rainfall event duration on flood mitigation on the probability distribution of the peak outflows. The mathematical framework has been tested using for comparison a Monte Carlo simulation where most of the simplified assumptions used to describe the dam behaviours are removed. This allowed to demonstrate that the proposed formulation is reliable for small river basins characterized by an impulsive response. The new approach for the quantification of flood peaks in river basins characterised by the presence of artificial detention basins can be used to improve existing flood mitigation practices, support the design of flood control systems and flood risk analyses.


2021 ◽  
Vol 36 (1) ◽  
pp. 136-150
Author(s):  
Anita Moldenhauer-Roth ◽  
Guillaume Piton ◽  
Sebastian Schwindt ◽  
Mona Jafarnejad ◽  
Anton J. Schleiss

2020 ◽  
Vol 10 (24) ◽  
pp. 9024
Author(s):  
Charles P. Humphrey ◽  
Guy Iverson

Stormwater control measures such as dry detention basins and wetlands are often used to reduce the discharge of urban runoff and nutrients to streams, but differences in nutrient treatment may vary between practices. The goal of this study was to compare the nitrogen treatment efficiency of a dry detention basin before and after it was converted into a stormwater wetland. Inflow and outflow from a detention basin in Greenville, North Carolina was sampled during 13 storms and the stormwater wetland was sampled during 10 storms. Total dissolved nitrogen (TDN), NO3−, NH4+, chloride, dissolved organic carbon (DOC), and physicochemical properties were evaluated. Inflow and outflow from the detention basin had identical median concentrations of TDN (0.47 mg L−1). The median TDN concentration for wetland outflow (0.18 mg L−1) was 63% lower relative to inflow (0.49 mg L−1). The hydraulic residence time of stormwater in the wetland was more than 10 times greater relative to the dry basin. There was a significant (p < 0.001) reduction in dissolved oxygen and oxidation reduction potential and an increase in median DOC concentrations in wetland outflow relative to inflow. Most of the reduction in TDN within the wetland was attributed to loss of NO3− (80% reduction), possibly due to denitrification. Conversion of dry detention basins to wetlands may provide significant benefits with regards to reducing TDN transport associated with urban runoff.


Sign in / Sign up

Export Citation Format

Share Document