Abstract
We studied the Carrington longitudinal and solar cycle distribution of the super active regions (SARs) from 1976to 2018. There were 51 SARs during this period. We divided the SARs into SARs1 and SARs2. SARs1 refers tothe SARs that produced extreme space weather events including ≥X5.0 flares, ground level events (GLEs) andsuper geomagnetic storms (SGSs: Dst≤ −250 nT), while SARs2 did not produce extreme space weather events.The total number of SARs1 and SARs2 are 32 and 19, respectively. The statistical results show that 34.4%, 65.6%and 78.1% of the SARs1 appeared in the ascending phase, descending phase and in the period from two yearsbefore to the three years after the solar maximum, respectively, while 52.6%, 47.4% and 100% of the SARs2appeared in the ascending phase, descending phase and in the period from two years before to the three years aftersolar maximum, respectively. The Carrington longitude distribution of the SARs1 shows that SARs1 in thelongitudinal scope of [0,150°] produced ≥X5.0 flares and GLEs, while only the SARs1 in the longitude range of[150°,360°] not only produced ≥X5.0 flares and GLEs, but also produced SGSs. The total number of SARsduring a SC has a good correlation with the SC size. However, the largest flare index of a SAR within a SC has apoor correlation with the SC size, implying that the number of SARs in a weak SC will be small. However, aweak SC may have a SAR that can produce very strong solar flare activities.