l segment
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Dongjie Chen ◽  
Di Wang ◽  
Fang Wei ◽  
Yufang Kong ◽  
Junhua Deng ◽  
...  

Abstract Background Akabane virus (AKAV) is an important insect-borne virus which is widely distributed throughout the world except the Europe and is considered as a great threat to herbivore health. Results An AKAV strain defined as TJ2016 was firstly isolated from the bovine sera in China in 2016. Sequence analysis of the S and M segments suggested that the isolated AKAV strain was closely related to the AKAV strains JaGAr39 and JaLAB39, which belonged to AKAV genogroup II. To further study the pathogenic mechanism of AKAV, the full-length cDNA clone of TJ2016 S, M, and L segment was constructed separately into the TVT7R plasmid at the downsteam of T7 promoter and named as TVT7R-S, TVT7R-M, and TVT7R-L, respectively. The above three plasmids were further transfected into the BSR-T7/5 cells simultaneously with a ratio of 1:1:1 to produce the rescued virus AKAV. Compared with the parental wild type AKAV (wtAKAV), the rescued virus (rAKAV) was proved to be with similar cytopathic effects (CPE), plaque sizes and growth kinetics in BHK-21 cells. Conclusion We successfully isolated a AKAV strain TJ2016 from the sera of cattle and established a reverse genetic platform for AKAV genome manipulation. The established reverse genetic system is also a powerful tool for further research on AKAV pathogenesis and even vaccine studies.


Author(s):  
Wachareeporn Trinachartvanit ◽  
Warissara Kaenkan ◽  
Wanwipa Nooma ◽  
Pattraporn Jeangkhwoa ◽  
Pakavadee Rakthong ◽  
...  

AbstractTick-borne viruses and bacteria that can cause diseases of animals and humans have high impact and are of concern as significant threats to human health worldwide. In this research, we screened microorganisms related to those pathogens in ticks from dogs, a cat, and a cow. The techniques used were PCR, DNA sequencing and phylogenetic analysis to detect and classify the microorganisms [Flavivirus, severe fever with thrombocytopenia syndrome virus (SFTSV), Phlebovirus, Coronavirus, Canine Parvovirus, eubacteria, Coxiella and Rickettsia]. A novel virus named Phlebovirus-like-AYUT and Stenotrophomonas maltophilia bacteria were found in one individual tick (Rhipicephalus sanguineus s.l.) from a dog. All tick samples were negative for Rickettsia, while 9/21 (42.9 %) were positive for Coxiella bacteria. The novel virus “Phlebovirus-like-AYUT” (the name derives from Phra Nakhon Si Ayutthaya Province in Thailand) was resolved by phylogenetic analysis of the partial L segment by maximum likelihood (ML) method using MEGA X. The phylogenetic tree also indicated that the virus was related to Phlebovirus in brown dog ticks reported in Trinidad and Tobago. In contrast, Phlebovirus-like-AYUT was in a distinct clade from Lihan tick Phlebovirus-Thailand (LTPV), which was previously found in cow ticks, Rhipicephalus microplus, in Nan Province, Thailand. This study reports the Stenotrophomonas maltophilia bacterium with a novel Phlebovirus-like-AYUT in a brown dog tick. The roles of this bacterium in a virus-positive tick or in viral transmission from animal host requires further investigation.


Author(s):  
Jun-Won Seo ◽  
Da Young Kim ◽  
Choon-Mee Kim ◽  
Na-Ra Yun ◽  
Yu-Mi Lee ◽  
...  

Hemorrhagic fever with renal syndrome (HFRS) is confirmed by the isolation of hantavirus from serum, detection of virus-specific IgM, or a four-fold change in IgG titers during the acute and convalescent periods measured using an immunofluorescence assay (IFA). However, these tests are inefficient for early diagnosis. Therefore, this study investigated the usefulness of reverse-transcriptase nested polymerase chain reaction (RT-nPCR) for early diagnosis of HFRS using clinical samples such as urine and serum. Electronic medical records of eight patients with confirmed HFRS using IFA and RT-nPCR between May 2016 and May 2020 at Chosun University Hospital were reviewed. The virus was detected in all patients using RT-nPCR targeting the large (L) segment of hantavirus during the early phase in urine and serum. Importantly, the virus was identified in urine at a time when it was not identified in serum. Additionally, the virus was detected in urine and serum for up to 1 month after initial presentation with illness, but not in saliva, using RT-nPCR. We report eight HFRS cases diagnosed using urine and serum, but not using saliva, with RT-nPCR targeting the L-segment. Hantavirus RNA detection by RT-nPCR in urine and serum may aid the rapid diagnosis of HFRS during the early phase of the disease. In particular, HFRS should not be ruled out based on negative RT-PCR results in serum, and RT-PCR should be performed using urine as well as serum during the early phase of symptoms.


2021 ◽  
Author(s):  
Dongjie Chen ◽  
Di Wang ◽  
Fang Wei ◽  
Yufang Kong ◽  
Junhua Deng ◽  
...  

Abstract Background: Akabane virus (AKAV) is an important insect-borne virus which is widely distributed in the tropical and temperate zones of Asia and Africa and is considered as a great threat in herbivores.Results: An AKAV defined as TJ2016 was firstly isolated from the serum of cattle in China in 2016. Sequence analysis of the S and M segments suggested that the isolated TJ2016 was closely related to the strains JaGAr39 and JaLAB39, which belonged to genogroup II. To further study the pathogenic mechanism of AKAV, the full-length cDNA clone of TJ-2016 S, M, and L segment was separately constructed into the TVT7R plasmid under the control of T7 promoter which named as TVT7R-S, TVT7R-M, and TVT7R-L, respectively. Then, the three constructed plasmids were transfected into the BSR-T7/5 cells simultaneously with a ratio of 1:1:1 to rescue AKAV. Compared with the parental wild type AKAV (wtAKAV), the rescued virus (rAKAV) was proved to have similar cytopathic effects (CPE), plaque sizes and growth kinetics in BHK-21 cells.Conclusion: We successfully isolated a AKAV strain TJ2016 from the serum of cattle and established a reverse genetic platform for AKAV genome manipulation. The established reverse genetic system is also a powerful tool which can be used for further AKAV pathogenesis and even vaccine studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liudmila N. Yashina ◽  
John Hay ◽  
Natalia A. Smetannikova ◽  
Tatiana V. Kushnareva ◽  
Olga V. Iunikhina ◽  
...  

Hemorrhagic fever with renal syndrome (HFRS) is a public health problem in Vladivostok city, Russia. From 1997 to 2019, a study of hantaviruses in Norway rats (Rattus norvegicus), a natural reservoir of Seoul virus (SEOV), and in HFRS patients was conducted. We demonstrated the presence of SEOV in the local population of Norway rats and detected SEOV in 10, Amur virus (AMRV) in 4 and Hantaan virus (HTNV) in 1 out of 15 HFRS patients. Genetic analysis based on partial S, M and L segment sequences revealed that the Russian SEOV strains were related most closely to strains from Cambodia and Vietnam. We postulate that the SEOV strains found in the port city of Vladivostok have been spread from South-East Asia as a result of distribution of rats during standard shipping trade activities. Moreover, we suggest that city residents may have acquired AMRV and HTNV infection during visits to rural areas.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 887
Author(s):  
Brigitta Zana ◽  
Gábor Kemenesi ◽  
Dóra Buzás ◽  
Gábor Csorba ◽  
Tamás Görföl ◽  
...  

In the past ten years, several novel hantaviruses were discovered in shrews, moles, and bats, suggesting the dispersal of hantaviruses in many animal taxa other than rodents during their evolution. Interestingly, the coevolutionary analyses of most recent studies have raised the possibility that nonrodents may have served as the primordial mammalian host and harboured the ancestors of rodent-borne hantaviruses as well. The aim of our study was to investigate the presence of hantaviruses in bat lung tissue homogenates originally collected for taxonomic purposes in Malaysia in 2015. Hantavirus-specific nested RT-PCR screening of 116 samples targeting the L segment of the virus has revealed the positivity of two lung tissue homogenates originating from two individuals, a female and a male of the Murina aenea bat species collected at the same site and sampling occasion. Nanopore sequencing of hantavirus positive samples resulted in partial genomic data from S, M, and L genome segments. The obtained results indicate molecular evidence for hantaviruses in the M. aenea bat species. Sequence analysis of the PCR amplicon and partial genome segments suggests that the identified virus may represent a novel species in the Mobatvirus genus within the Hantaviridae family. Our results provide additional genomic data to help extend our knowledge about the evolution of these viruses.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 857 ◽  
Author(s):  
Kang ◽  
Gu ◽  
Yashina ◽  
Cook ◽  
Yanagihara

With the recent discovery of genetically distinct hantaviruses (family Hantaviridae) in shrews (order Eulipotyphla, family Soricidae), the once-conventional view that rodents (order Rodentia) served as the primordial reservoir hosts now appears improbable. The newly identified soricid-borne hantaviruses generally demonstrate well-resolved lineages organized according to host taxa and geographic origin. However, beginning in 2007, we detected sequences that did not conform to the prototypic hantaviruses associated with their soricid host species and/or geographic locations. That is, Eurasian common shrews (Sorex araneus), captured in Hungary and Russia, were found to harbor hantaviruses belonging to two separate and highly divergent lineages. We have since accumulated additional examples of these highly distinctive hantavirus sequences in the Laxmann’s shrew (Sorex caecutiens), flat-skulled shrew (Sorex roboratus) and Eurasian least shrew (Sorex minutissimus), captured at the same time and in the same location in the Sakha Republic in Far Eastern Russia. Pair-wise alignment and phylogenetic analysis of partial and full-length S-, M- and/or L-segment sequences indicate that a distinct hantavirus species related to Altai virus (ALTV), first reported in a Eurasian common shrew from Western Siberia, was being maintained in these closely related syntopic soricine shrew species. These findings suggest that genetic variants of ALTV might have resulted from ancient host-switching events with subsequent diversification within the Soricini tribe in Eurasia.


Author(s):  
Brigitta Zana ◽  
Gabor Kemenesi ◽  
Dora Buzas ◽  
Gabor Csorba ◽  
Tamas Gorfol ◽  
...  

In the past ten years several novel hantaviruses were discovered in shrews, moles and bats, suggesting the dispersal of hantaviruses in many animal taxa other than rodents during their evolution. Interestingly, the co-evolutionary analyses of most recent studies have raised the possibility of non-rodents may have served as the primordial mammalian host and harboured the ancestors of rodent-borne hantaviruses as well. The aim of our study was to investigate the presence of hantaviruses in bat lung tissue homogenates originally collected for taxonomic purposes in Malaysia, 2015. Hantavirus specific nested RT-PCR screening of 116 samples targeting the L segment of the virus have revealed the positivity of two lung tissue homogenates originating from Murina aenea bat species. Nanopore sequencing of hantavirus positive samples resulted in partial genomic data from S, M and L genome segments. The obtained results indicate the first molecular evidence for hantavirus in Murina aenae bat species and also the first discovery of a hantavirus in Murina bat species. Sequence analysis of the PCR amplicon and partial genome segments suggests the identified virus may represent a novel species in Mobatvirus genus within Hantaviridae family. Furthermore, our results provide additional genomic data to help extend our knowledge about the evolution of these viruses.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 694 ◽  
Author(s):  
Weiss ◽  
Klempa ◽  
Tenner ◽  
Kruger ◽  
Hofmann

To screen diagnostic specimens for the presence of hantavirus genomes or to identify new hantaviruses in nature, the pan-hanta L-PCR assay, a broadly reactive nested reverse transcription polymerase chain reaction (RT-PCR) assay targeting the L segment, is highly preferred over other assays because of its universality and high sensitivity. In contrast, the geographic allocation of Puumala virus strains to defined outbreak regions in Germany was previously done based on S segment sequences. We show that the routinely generated partial L segment sequences resulting from the pan-hanta L-PCR assay provide sufficient phylogenetic signal to inform the molecular epidemiology of the Puumala virus. Consequently, an additional S segment analysis seems no longer necessary for the identification of the spatial origin of a virus strain.


2019 ◽  
Vol 10 (4) ◽  
pp. 942-948 ◽  
Author(s):  
Victor Pimentel ◽  
Rita Afonso ◽  
Mónica Nunes ◽  
Maria Luisa Vieira ◽  
Daniel Bravo-Barriga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document