3d landmarks
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 14)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Cho-Ying Wu ◽  
Qiangeng Xu ◽  
Ulrich Neumann
Keyword(s):  

2021 ◽  
Vol 10 (22) ◽  
pp. 5303
Author(s):  
Gauthier Dot ◽  
Frédéric Rafflenbeul ◽  
Adeline Kerbrat ◽  
Philippe Rouch ◽  
Laurent Gajny ◽  
...  

In some dentofacial deformity patients, especially patients undergoing surgical orthodontic treatments, Computed Tomography (CT) scans are useful to assess complex asymmetry or to plan orthognathic surgery. This assessment would be made easier for orthodontists and surgeons with a three-dimensional (3D) cephalometric analysis, which would require the localization of landmarks and the construction of reference planes. The objectives of this study were to assess manual landmarking repeatability and reproducibility (R&R) of a set of 3D landmarks and to evaluate R&R of vertical cephalometric measurements using two Frankfort Horizontal (FH) planes as references for horizontal 3D imaging reorientation. Thirty-three landmarks, divided into “conventional”, “foraminal” and “dental”, were manually located twice by three experienced operators on 20 randomly-selected CT scans of orthognathic surgery patients. R&R confidence intervals (CI) of each landmark in the -x, -y and -z directions were computed according to the ISO 5725 standard. These landmarks were then used to construct 2 FH planes: a conventional FH plane (orbitale left, porion right and left) and a newly proposed FH plane (midinternal acoustic foramen, orbitale right and left). R&R of vertical cephalometric measurements were computed using these 2 FH planes as horizontal references for CT reorientation. Landmarks showing a 95% CI of repeatability and/or reproducibility > 2 mm were found exclusively in the “conventional” landmarks group. Vertical measurements showed excellent R&R (95% CI < 1 mm) with either FH plane as horizontal reference. However, the 2 FH planes were not found to be parallel (absolute angular difference of 2.41°, SD 1.27°). Overall, “dental” and “foraminal” landmarks were more reliable than the “conventional” landmarks. Despite the poor reliability of the landmarks orbitale and porion, the construction of the conventional FH plane provided a reliable horizontal reference for 3D craniofacial CT scan reorientation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258341
Author(s):  
Jeanelle Uy ◽  
Natalie M. Laudicina

The human pelvic canal (true pelvis) functions to support the abdominopelvic organs and serves as a passageway for reproduction (females). Previous research suggests that these two functions work against each other with the expectation that the supportive role results in a narrower pelvic midplane, while fetal passage necessitates a larger opening. In this research, we examine how gut size relates to the size and shape of the true pelvis, which may have implications on how gut size can influence pelvic floor integrity. Pelves and in vivo gut volumes were measured from CT scans of 92 adults (48 female, 44 male). The true pelvis was measured at three obstetrical planes (inlet, midplane, outlet) using 11 3D landmarks. CT volumetry was used to obtain an individual’s gut size. Gut volume was compared to the pelvic planes using multiple regression to evaluate the relationship between gut size and the true pelvis. We find that, in males, larger gut sizes are associated with increased mediolateral canal dimensions at the inlet and midplane. In females, we find that larger gut sizes are associated with more medially-projecting ischial spines and an anteroposteriorly longer outlet. We hypothesize that the association of larger guts with increased canal width in males and increased outlet length in females are adaptations to create adequate space for the gut, while more medially projecting ischial spines reduce the risk of pelvic floor disorders in females, despite its possible spatial consequences for fetal passage.


2021 ◽  
Author(s):  
Gauthier Dot ◽  
Frederic Rafflenbeul ◽  
Adeline Kerbrat ◽  
Philippe Rouch ◽  
Laurent Gajny ◽  
...  

Objectives To assess manual landmarking repeatability and reproducibility (R&R) of a set of three-dimensional (3D) landmarks and to evaluate R&R of vertical cephalometric measurements using two Frankfort Horizontal (FH) planes as references for horizontal 3D imaging reorientation. Methods Thirty-three landmarks, divided into "conventional", "foraminal" and "dental", were manually located twice by 3 experienced operators on 20 computed tomography (CT) scans of orthognathic surgery patients. R&R of the landmark localization were computed according to the ISO 5725 standard. These landmarks were then used to construct 2 FH planes: a conventional FH plane (orbitale left, porion right and left) and a newly proposed FH plane (midinternal acoustic foramen, orbitale right and left). R&R of vertical cephalometric measurements were computed using these 2 FH planes as horizontal references for CT reorientation. Results Landmarks showing a 95% confidence interval (CI) of repeatability and/or reproducibility > 2mm were found exclusively in the "conventional" landmarks group. Vertical measurements showed excellent R&R (95% CI < 1mm) with either FH plane as horizontal reference. However, the 2 FH planes were not found to be parallel (absolute angular difference of 2.41°, SD 1.27°). The average time needed to landmark one CT scan was 14 ± 3 minutes. Conclusions The "dental" and "foraminal" landmarks tended to be more reliable than the "conventional" landmarks. Despite the poor overall reliability of the landmarks orbitale and porion, the construction of the conventional FH plane using 3 landmarks provided a reliable horizontal reference for 3D craniofacial CT scan reorientation.


2021 ◽  
Vol 318 ◽  
pp. 110612
Author(s):  
Marie Jandová ◽  
Marek Daňko ◽  
Petra Urbanová

2020 ◽  
Vol 60 (5) ◽  
pp. 1330-1345 ◽  
Author(s):  
Shannon M Buttimer ◽  
Natasha Stepanova ◽  
Molly C Womack

Abstract Anurans (frogs and toads) have a unique pelvic and hind limb skeleton among tetrapods. Although their distinct body plan is primarily associated with saltation, anuran species vary in their primary locomotor mode (e.g., walkers, hoppers, jumpers, and swimmers) and are found in a wide array of microhabitats (e.g., burrowing, terrestrial, arboreal, and aquatic) with varying functional demands. Given their largely conserved body plan, morphological adaptation to these diverse niches likely results from more fine-scale morphological change. Our study determines how shape differences in Anura’s unique pelvic and hind limb skeletal structures vary with microhabitat, locomotor mode, and jumping ability. Using microCT scans of preserved specimens from museum collections, we added 3D landmarks to the pelvic and hind limb skeleton of 230 anuran species. In addition, we compiled microhabitat and locomotor data from the literature for these species that span 52 of the 55 families of frogs and ∼210 million years of anuran evolution. Using this robust dataset, we examine the relationship between pelvic and hind limb morphology and phylogenetic history, allometry, microhabitat, and locomotor mode. We find pelvic and hind limb changes associated with shifts in microhabitat (“ecomorphs”) and locomotor mode (“locomorphs”) and directly relate those morphological changes to the jumping ability of individual species. We also reveal how individual bones vary in evolutionary rate and their association with phylogeny, body size, microhabitat, and locomotor mode. Our findings uncover previously undocumented morphological variation related to anuran ecological and locomotor diversification and link that variation to differences in jumping ability among species.


2020 ◽  
Vol 12 (7) ◽  
pp. 1142
Author(s):  
Jeonghoon Kwak ◽  
Yunsick Sung

To provide a realistic environment for remote sensing applications, point clouds are used to realize a three-dimensional (3D) digital world for the user. Motion recognition of objects, e.g., humans, is required to provide realistic experiences in the 3D digital world. To recognize a user’s motions, 3D landmarks are provided by analyzing a 3D point cloud collected through a light detection and ranging (LiDAR) system or a red green blue (RGB) image collected visually. However, manual supervision is required to extract 3D landmarks as to whether they originate from the RGB image or the 3D point cloud. Thus, there is a need for a method for extracting 3D landmarks without manual supervision. Herein, an RGB image and a 3D point cloud are used to extract 3D landmarks. The 3D point cloud is utilized as the relative distance between a LiDAR and a user. Because it cannot contain all information the user’s entire body due to disparities, it cannot generate a dense depth image that provides the boundary of user’s body. Therefore, up-sampling is performed to increase the density of the depth image generated based on the 3D point cloud; the density depends on the 3D point cloud. This paper proposes a system for extracting 3D landmarks using 3D point clouds and RGB images without manual supervision. A depth image provides the boundary of a user’s motion and is generated by using 3D point cloud and RGB image collected by a LiDAR and an RGB camera, respectively. To extract 3D landmarks automatically, an encoder–decoder model is trained with the generated depth images, and the RGB images and 3D landmarks are extracted from these images with the trained encoder model. The method of extracting 3D landmarks using RGB depth (RGBD) images was verified experimentally, and 3D landmarks were extracted to evaluate the user’s motions with RGBD images. In this manner, landmarks could be extracted according to the user’s motions, rather than by extracting them using the RGB images. The depth images generated by the proposed method were 1.832 times denser than the up-sampling-based depth images generated with bilateral filtering.


2020 ◽  
Vol 69 (5) ◽  
pp. 962-972 ◽  
Author(s):  
Pauline Provini ◽  
Elizabeth Höfling

Abstract Birds can use different types of gaits to move on the ground: they either walk, hop, or run. Although velocity can easily explain a preference for running, it remains unclear what drives a bird species to favor hopping over walking. As many hopping birds are relatively small and arboreal, we wanted to test the link between size, arboreality, and hopping ability. First, we carried out ancestral character state reconstructions of size range, hopping ability, and habitat traits on over 1000 species of birds. We found that both hopping ability and arboreality were derived and significantly correlated traits in avian evolution. Second, we tested the influence of hopping ability on the morphology of the lower appendicular skeleton by quantifying the shape differences of the pelvis and the three long bones of the hind limbs in 47 avian species with different habitats and gait preferences. We used geometric morphometrics on 3D landmarks, digitized on micro–computed tomography (micro-CT) and surface scans of the pelvis, femur, tibiotarsus, and tarsometatarsus. Locomotion habits significantly influence the conformation of the pelvis, especially at the origin of hip and knee muscle extensors. Interestingly, habitat, more than locomotion habits, significantly changed tarsometatarsus conformation. The morphology of the distal part of the tarsometatarsus constrains digit orientation, which leads to a greater ability to perch, an advantageous trait in arboreality. The results of this work suggest an arboreal origin of hopping and illuminate the evolution of avian terrestrial locomotion.[Anatomy; avian; gait; leg; lifestyle; pelvis; tree-dwelling.]


2020 ◽  
Vol 5 (46) ◽  
pp. 1262
Author(s):  
Fidji Berio ◽  
Yann Bayle
Keyword(s):  

GigaScience ◽  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Hao-Chun Hsu ◽  
Wen-Chieh Chou ◽  
Yan-Fu Kuo

Abstract Background Quantification of corolla shape variations helps biologists to investigate plant diversity and evolution. 3D images capture the genuine structure and provide comprehensive spatial information. Results This study applied X-ray micro-computed tomography (µCT) to acquire 3D structures of the corollas of clade Corytholoma and extracted a set of 415 3D landmarks from each specimen. By applying the geometric morphometrics (GM) to the landmarks, the first 4 principal components (PCs) in the 3D shape and 3D form analyses, respectively, accounted for 87.86% and 96.34% of the total variance. The centroid sizes of the corollas only accounted for 5.46% of the corolla shape variation, suggesting that the evolutionary allometry was weak. The 4 morphological traits corresponding to the 4 shape PCs were defined as tube curvature, lobe area, tube dilation, and lobe recurvation. Tube curvature and tube dilation were strongly associated with the pollination type and contained phylogenetic signals in clade Corytholoma. The landmarks were further used to reconstruct corolla shapes at the ancestral states. Conclusions With the integration of µCT imaging into GM, the proposed approach boosted the precision in quantifying corolla traits and improved the understanding of the morphological traits corresponding to the pollination type, impact of size on shape variation, and evolution of corolla shape in clade Corytholoma.


Sign in / Sign up

Export Citation Format

Share Document