lattice boltzmann equations
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2057 (1) ◽  
pp. 012070
Author(s):  
A L Kupershtokh

Abstract The regularities of the evaporation flux of pure vapor in the method of lattice Boltzmann equations (LBE) are investigated. The simulations show that the mass flux during the evaporation of a flat surface is proportional to the difference in the densities of the saturated vapor at the surface temperature and surrounding vapor, which is in good agreement with the Hertz–Knudsen law. A simple method is proposed for setting the vapor flow at the flat boundary of the computational domain for the LBE method.


Author(s):  
Елизавета Вячеславовна Зипунова ◽  
Анастасия Юрьевна Перепёлкина ◽  
Андрей Владимирович Закиров

При решении задач динамики жидкостей и газов в области малых скоростей потока и при изотермических условиях с успехом применяется метод решеточных уравнений Больцмана (LBM). Для решения дискретного уравнения Больцмана может быть использован новый метод Particles-on-Demand (PonD), в котором в каждой точке сетки дискретизация функции распределения в пространстве скоростей центрирована относительно текущей скорости потока. В отличие от классического LBM, метод PonD применим не только для задач с малыми скоростями потока и при изотермических условиях. В данной работе реализован метод PonD D1Q5 с итерационным расчетом скорости переноса и явным расчетом первых трех моментов, включая скорости переноса. Показано, что рассмотренная модификация метода PonD хоть и накладывает ограничения на параметры, позволяет проводить расчеты в большем диапазоне допустимых скоростей. The purpose of the paper is to demonstrate applicability of the Particle on Demand (PonD) D1Q5 method with the explicit calculation of the first three moments to problem with high speed of the flow. The standard LBM is applicable for small flow velocities. Thus to overcome this limitation we use PonD. In this work, we use conservative version of PonD - the D1Q5 method with the explicit calculation of the first three moments. Methodology. The Pond over LBM was applied to the Riemann problem in order to demonstrate the advantage of the method. In this work, we choose the case when contact discontinuities could propagate at variable speed. Findings. If the interpolation pattern is fixed relative to the point at which there is a current update of the discrete distribution function, then the transfer step can be written explicitly, thus the scheme is conservative. On the other hand, this imposes additional restrictions on the temperature and the flow rate. But even if the PonD scheme is limited to a fixed interpolation pattern, it is possible to simulate flows with larger values of the Mach number than in the case when the classical method of lattice Boltzmann equations is used. Originality/value. In the described particular case of the PonD method, it is possible to avoid iterations by calculating the temperature and velocity values directly at a new time layer. In this work, we have investigated the properties and the range of applicability (admissible values of temperature and velocity) of such modification of PonD.


2019 ◽  
Vol 390 ◽  
pp. 133-150
Author(s):  
F. Mechighel ◽  
S. Ben Aoua ◽  
S. Dost

The main topic of this paper is the development of a mathematical model, based on the Lattice Boltzmann equations (LBE), which is proposed for the simulation of the complex convective flow, held in an electrically conducting melt, driven by the combined action of buoyancy, surface-tension, and electromagnetic forces. The lattice Boltzmann method (LBM) is relatively novel and contrasts with the usual well-known methods to physical modeling in the domain of computational fluid dynamics (CFD). Indeed, the LBM describes the fluid (i.e. lattice fluid) at a microscopic level (molecular) and proposes models for the collision between molecules. The full continuum-level physics (i.e. the macroscopic hydrodynamic fields) is implicitly contained in the LB model. Indeed those macroscopic quantities are defined as moments of the so-called particle distribution functions. In the present work, a two-dimensions (2D) LBE-based model is developed to the simulation of convection melt flow driven by the combination of natural buoyancy, surface tension, and electromagnetic forces. The model is applied to numerical modeling of the problems of buoyancy, surface-tension, and electromagnetic driven convection melt flow in an enclosure. The melt system used has a low Prandtl number, which is appropriate to crystal growth melts.


Sign in / Sign up

Export Citation Format

Share Document