2d to 3d
Recently Published Documents


TOTAL DOCUMENTS

690
(FIVE YEARS 149)

H-INDEX

37
(FIVE YEARS 6)

Author(s):  
L. Michels ◽  
A. J. F. Pires ◽  
C. A. S. Ribeiro ◽  
B. Kroka ◽  
E. G. Hoel ◽  
...  

AbstractNon-metallic microparticles in spheroidal graphite irons are a product of the inoculation and the Mg-treatment of the liquid melt. Besides the influence on the mechanical properties of these iron–carbon–silicon alloys, they are also responsible for the nucleation and the morphology of the graphite phase. The present investigation is undertaken to study holding time effects of a (Ba, Ca, Al)–ferrosilicon (called Ba-inoculant) and (Ca, Al)–ferrosilicon (called Ca-inoculant) inoculants on the overall distribution of microparticles. Using the 2D to 3D conversions method, which is typically used for graphite nodules, the non-metallic microparticles’ statistical parameters, such as size distributions and number densities, are quantified. The total number of particles is similar after Mg-treatment and inoculation for Ca-inoculant but not for Ba-inoculated samples, which lose approximately 25 pct of microparticles after 1 minute of holding time. Iron treated with the Ca-inoculant loses about 37 pct of its nodules after 5 minutes, while the Ba-inoculated melts maintain their performance even after 10 minutes. Based on extrapolating the trend of the undercooling, Ba-inoculated samples would reach the uninoculated undercooling values in 48 minutes, while Ca-inoculated samples in only 11 minutes. By evaluating the size distributions of the non-metallic microparticles, the Ostwald ripening hypothesis or particle aggregation can be verified. The results suggest that sulfides are more critical for graphite nucleation since they can be correlated with the graphite number densities. However, due to the small difference in the microparticle population of the uninoculated sample with Ca-inoculated samples, other aspects of the fading mechanism need to be considered, such as transient metastable states, since the central hypothesis of loss of inclusions cannot alone explain the decrease in the nucleation frequency of graphite.


Author(s):  
Shuai Zhou ◽  
Jing Bai ◽  
Tiantian Li ◽  
Xiaxin Gao ◽  
Ruoyu Xu ◽  
...  

2021 ◽  
Vol 12 (9) ◽  
pp. 459-469
Author(s):  
D. D. Rukhovich ◽  

In this paper, we propose a novel method of joint 3D object detection and room layout estimation. The proposed method surpasses all existing methods of 3D object detection from monocular images on the indoor SUN RGB-D dataset. Moreover, the proposed method shows competitive results on the ScanNet dataset in multi-view mode. Both these datasets are collected in various residential, administrative, educational and industrial spaces, and altogether they cover almost all possible use cases. Moreover, we are the first to formulate and solve a problem of multi-class 3D object detection from multi-view inputs in indoor scenes. The proposed method can be integrated into the controlling systems of mobile robots. The results of this study can be used to address a navigation task, as well as path planning, capturing and manipulating scene objects, and semantic scene mapping.


2021 ◽  
Author(s):  
Peter Somers ◽  
Johannes Schule ◽  
Cristina Tarin ◽  
Oliver Sawodny

2021 ◽  
Author(s):  
Sidónia Molitorisová ◽  
Yuyan Zhang ◽  
Martin Kubů ◽  
Ang Li ◽  
Zdeněk Tošner ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (21) ◽  
pp. 9889
Author(s):  
Zehao He ◽  
Xiaomeng Sui ◽  
Liangcai Cao

Holographic display has the potential to be utilized in many 3D application scenarios because it provides all the depth cues that human eyes can perceive. However, the shortage of 3D content has limited the application of holographic 3D displays. To enrich 3D content for holographic display, a 2D to 3D rendering approach is presented. In this method, 2D images are firstly classified into three categories, including distant view images, perspective view images and close-up images. For each category, the computer-generated depth map (CGDM) is calculated using a corresponding gradient model. The resulting CGDMs are applied in a layer-based holographic algorithm to obtain computer-generated holograms (CGHs). The correctly reconstructed region of the image changes with the reconstruction distance, providing a natural 3D display effect. The realistic 3D effect makes the proposed approach can be applied in many applications, such as education, navigation, and health sciences in the future.


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1101
Author(s):  
Bahram Saeidian ◽  
Abbas Rajabifard ◽  
Behnam Atazadeh ◽  
Mohsen Kalantari

The development and use of underground space is a necessity for most cities in response to rapid urbanisation. Effective underground land administration is critical for sustainable urban development. From a land administration perspective, the ownership extent of underground assets is essential for planning and managing underground areas. In some jurisdictions, physical structures (e.g., walls, ceilings, and utilities) are also necessary to delineate the ownership extent of underground assets. The current practice of underground land administration focuses on the ownership of underground space and mostly relies on 2D survey plans. This inefficient and fragmented 2D-based underground data management and communication results in several issues including boundary disputes, underground strikes, delays and disruptions in projects, economic losses, and urban planning issues. This study provides a review of underground land administration from three common aspects: legal, institutional, and technical. A range of important challenges have been identified based on the current research and practice. To address these challenges, the authors of this study propose a new framework for 3D underground land administration. The proposed framework outlines the future research directions to upgrade underground land administration using integrated 3D digital approaches.


2021 ◽  
Author(s):  
Issam Laradji ◽  
Pau Rodriguez ◽  
David Vazquez ◽  
Derek Nowrouzezahrai

2021 ◽  
pp. 133161
Author(s):  
Zibiao Ding ◽  
Xingtao Xu ◽  
Jiabao Li ◽  
Yuquan Li ◽  
Kai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document