hover flight
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


2021 ◽  
Vol 10 (12) ◽  
pp. e304101220546
Author(s):  
João Manoel de Oliveira Neto ◽  
Andersson Guimarães Oliveira ◽  
João Vitor Lira de Carvalho Firmino ◽  
Marcelo Cavalcanti Rodrigues ◽  
Antônio Almeida Silva ◽  
...  

In the forward flight, wind loads affect the helicopters and cause vibration. This paper analyzes the behavior of a helicopter prototype composed by two blades when subjected to a front wind load, similar to the forwarding flight condition. An Artificial Neural Network (ANN) processes the experimental data in order to identify the pattern of its dynamic behavior. The tests led to Vibration analysis for different wind speeds. Also, the data indicates that vibration amplitude increases when the blades are subjected to the fundamental frequency and its first harmonic on tests conducted without rotor plane tilt (hover flight). On the other hand, the second test performs a 5-degree tilt on the rotor disc. In this test, the vibration amplitude decreased in the fundamental frequency, and the amplitude related to the first harmonic increased. The ANN achieved 100% efficiency in recognizing the flight conditions of the prototype.


2021 ◽  
Vol 13 (3) ◽  
pp. 179-194
Author(s):  
Mohamad Norherman SHAUQEE ◽  
Parvathy RAJENDRAN ◽  
Nurulasikin Mohd SUHADIS

Rotor-craft style UAV, such as the quadrotor, has become increasingly popular with researchers due to its advantages over fixed-wing UAV. The quadrotor is highly maneuverable, can perform vertical take-off and landing (VTOL), and can hover flight capability. Nevertheless, handling the quadrotor complex, highly nonlinear dynamics is difficult and challenging. A suitable control system is needed to control the quadrotor system effectively. Therefore, this paper presents a review of different controller design techniques used by researchers over the past years for the quadrotor rotational and translational stabilization control. Three categories are discussed: linear controller, nonlinear controller, and intelligent controller. Based on their performance specifications, the system rise time, settling time, overshoot, and steady-state error are discussed. Finally, a comparative analysis is tabulated, summarizing the literature in the performance specifications described above.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 205
Author(s):  
Chang Wang ◽  
Minqi Huang ◽  
Xianmin Peng ◽  
Guichuan Zhang ◽  
Min Tang ◽  
...  

The aerodynamic performance of a reduced-scale coaxial rigid rotor system in hover and steady forward flights was experimentally investigated to gain insights into the effect of interference between upper and lower rotors and the influences of the advance ratio, shaft tilt angle and lift offset. The rotor system featured by 2 m-diameter, four-bladed upper and lower hingeless rotors and was installed in a coaxial rotor test rig. Experiments were conducted in the Φ3.2 m wind tunnel at China Aerodynamics Research and Development Center (CARDC). The rotor system was tested in hover states at collective pitches ranging from 0° to 13° and it was also tested in forward flights at advance ratios up to 0.6, with specific focus on the shaft tilt angle and lift offset sweeps. To ensure that the coaxial rotor was operating in a similar manner to that of the real flight, the torque difference was trimmed to zero in hover flight, whilst the constant lift coefficient was maintained in forward flight. An isolated single-rotor configuration test was also conducted with the same pitch angle setting in the coaxial rotor. The hover test results demonstrate that the figure of merit (FM) value of the lower rotor is lower than that of the upper rotor, and both are lower than that of the isolated single rotor. Moreover, the coaxial rotor configuration can contribute to better hover efficiency under the same blade loading coefficient (CT/σ). In forward flight, the effective lift-to-drag (L/De) ratio of the coaxial rigid rotor does not monotonously change as the advance ratio increases. Increases in the required power and drag in the case with a high advance ratio of 0.6 leads to the decreasing L/De ratio of the rotor. Meanwhile, the L/De ratio of the rotor is relatively high when the rotor shaft is tilted backward. The increasing lift offset tends to result in reduced required rotor power and an increase in the rotor drag. When the effect of the reduced rotor power is greater than that of the increased rotor drag, the L/De ratio increases as the lift offset increases. The L/De ratio can benefit significantly from lift offset at a high advance ratio, but it is much less influenced by lift offset at a low advance ratio. The forward performance efficiency of the upper rotor is poorer than that of the lower rotor, which is significantly different from the case in the hover flight.


2021 ◽  
pp. 106870
Author(s):  
Zongxia Jiao ◽  
Liang Wang ◽  
Longfei Zhao ◽  
Wuyao Jiang

2021 ◽  
Vol 93 (1) ◽  
pp. 159-170
Author(s):  
Femi Thomas ◽  
Mija Salomi Johnson

Purpose This paper aims to propose output feedback-based control algorithms for the flight control system of a scaled, un-crewed helicopter in its hover flight mode. Design/methodology/approach The proposed control schemes are based on H∞ control and composite nonlinear control. The gains of the output feedback controllers are obtained as the solution of a set of linear matrix inequalities (LMIs). Findings In the proposed schemes, the finite-time convergence of system states to trim condition is achieved with minimum deviation from the steady-state. As the proposed composite nonlinear output feedback design improves the transient response, it is well suited for a scaled helicopter flight. The use of measured output vector instead of the state vector or its estimate for feedback provides a simple control structure and eliminates the need for an observer in real-time application. The proposed control strategies are relevant to situations in which a simple controller is essential due to economic factors, reliability and hardware implementation constraints. Practical implications The proposed control strategies are relevant to situations in which a simple controller is essential due to economic factors, reliability and hardware implementation constraints. They also have significance in applications where the number of measurement quantities needs to be minimized such as in a fully functional rotor-craft unmanned aerial vehicle. Social implications The developed output feedback control algorithms can be used in small-scale helicopters for numerous civilian and military applications. Originality/value This work addresses the LMI-based formulation and solution of an output feedback controller for a hovering un-crewed helicopter. The stability and robustness of the closed-loop system are proved mathematically and the performance of the proposed schemes is compared with an existing strategy via simulation studies.


2021 ◽  
Author(s):  
Edward N. Bachelder ◽  
Jeffrey Lusardi ◽  
Bimal L. Aponso ◽  
Martine Godfroy-Cooper

2020 ◽  
Vol 32 (5) ◽  
pp. 051901 ◽  
Author(s):  
Anand Sundaresan Bharadwaj ◽  
Santanu Ghosh

Sign in / Sign up

Export Citation Format

Share Document