droplet control
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 3)

2022 ◽  
Vol 119 (2) ◽  
pp. e2105459119
Author(s):  
Yuankai Jin ◽  
Wanghuai Xu ◽  
Huanhuan Zhang ◽  
Ruirui Li ◽  
Jing Sun ◽  
...  

Various physical tweezers for manipulating liquid droplets based on optical, electrical, magnetic, acoustic, or other external fields have emerged and revolutionized research and application in medical, biological, and environmental fields. Despite notable progress, the existing modalities for droplet control and manipulation are still limited by the extra responsive additives and relatively poor controllability in terms of droplet motion behaviors, such as distance, velocity, and direction. Herein, we report a versatile droplet electrostatic tweezer (DEST) for remotely and programmatically trapping or guiding the liquid droplets under diverse conditions, such as in open and closed spaces and on flat and tilted surfaces as well as in oil medium. DEST, leveraging on the coulomb attraction force resulting from its electrostatic induction to a droplet, could manipulate droplets of various compositions, volumes, and arrays on various substrates, offering a potential platform for a series of applications, such as high-throughput surface-enhanced Raman spectroscopy detection with single measuring time less than 20 s.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1065
Author(s):  
Nicholas Grant ◽  
Brian Geiss ◽  
Stuart Field ◽  
August Demann ◽  
Thomas W. Chen

Microfluidics offer many advantages to Point of Care (POC) devices through lower reagent use and smaller size. Additionally, POC devices offer the unique potential to conduct tests outside of the laboratory. In particular, Electro-wetting on Dielectric (EWOD) microfluidics has been shown to be an effective way to move and mix liquids enabling many PoC devices. However, much of the research surrounding these microfluidic systems are focused on a single aspect of the system capability, such as droplet control or a specific new application at the device level using the EWOD technology. Often in these experiments the supporting systems required for operation are bench top equipment such as function generators, power supplies, and personal computers. Although various aspects of how an EWOD device is capable of moving and mixing droplets have been demonstrated at various levels, a complete self-contained and portable lab-on-a-chip system based on the EWOD technology has not been well demonstrated. For instance, EWOD systems tend to use high voltage alternating current (AC) signals to actuate electrodes, but little consideration is given to circuitry size or power consumption of such components to make the entire system portable. This paper demonstrates the feasibility of integrating all supporting hardware and software to correctly operate an EWOD device in a completely self-contained and battery-powered handheld unit. We present results that demonstrate a complete sample preparation flow for deoxyribonucleic acid (DNA) extraction and isolation. The device was designed to be a field deployable, hand-held platform capable of performing many other sample preparation tasks automatically. Liquids are transported using EWOD and controlled via a programmable microprocessor. The programmable nature of the device allows it to be configured for a variety of tests for different applications. Many considerations were given towards power consumption, size, and system complexity which make it ideal for use in a mobile environment. The results presented in this paper show a promising step forward to the portable capability of microfluidic devices based on the EWOD technology.


Langmuir ◽  
2021 ◽  
Author(s):  
Panagiotis E. Theodorakis ◽  
Alidad Amirfazli ◽  
Bin Hu ◽  
Zhizhao Che
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 340
Author(s):  
Lu Tian ◽  
Zi Ye ◽  
Lin Gui

This study presents a dielectrophoresis-based liquid metal (LM) droplet control microfluidic device. Six square liquid metal electrodes are fabricated beneath an LM droplet manipulation pool. By applying different voltages on the different electrodes, a non-uniform electric field is formed around the LM droplet, and charges are induced on the surface of the droplet accordingly, so that the droplet could be driven inside the electric field. With a voltage of ±1000 V applied on the electrodes, the LM droplets are driven with a velocity of 0.5 mm/s for the 2.0 mm diameter ones and 1.0 mm/s for the 1.0 mm diameter ones. The whole chip is made of PDMS, and microchannels are fabricated by laser ablation. In this device, the electrodes are not in direct contact with the working droplets; a thin PDMS film stays between the electrodes and the driven droplets, preventing Joule heat or bubble formation during the experiments. To enhance the flexibility of the chip design, a gallium-based alloy with melting point of 10.6 °C is used as electrode material in this device. This dielectrophoresis (DEP) device was able to successfully drive liquid metal droplets and is expected to be a flexible approach for liquid metal droplet control.


2020 ◽  
Vol 146 (7) ◽  
pp. 671 ◽  
Author(s):  
Jeffrey D. Carron ◽  
Lauren S. Buck ◽  
Claude F. Harbarger ◽  
Thomas L. Eby

RSC Advances ◽  
2020 ◽  
Vol 10 (45) ◽  
pp. 26972-26981 ◽  
Author(s):  
Dong Liu ◽  
Zhenghuan Yang ◽  
Luyang Zhang ◽  
Minglun Wei ◽  
Yuan Lu

Cell-free biology using remote-controlled digital microfluidics for programmed biological screening and synthesis.


Author(s):  
Gerold Fink ◽  
Medina Hamidovic ◽  
Robert Wille ◽  
Werner Haselmayr

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicasio R. Geraldi ◽  
Jian H. Guan ◽  
Linzi E. Dodd ◽  
Pietro Maiello ◽  
Ben B. Xu ◽  
...  

Abstract Often wetting is considered from the perspective of a single surface of a rigid substrate and its topographical properties such as roughness or texture. However, many substrates, such as membranes and meshes, have two useful surfaces. Such flexible substrates also offer the potential to be formed into structures with either a double-sided surface (e.g. by joining the ends of a mesh as a tape) or a single-sided surface (e.g. by ends with a half-twist). When a substrate possesses holes, it is also possible to consider how the spaces in the substrate may be connected or disconnected. This combination of flexibility, holes and connectedness can therefore be used to introduce topological concepts, which are distinct from simple topography. Here, we present a method to create a Slippery Liquid-Infused Porous Surface (SLIPS) coating on flexible conformable doubled-sided meshes and for coating complex geometries. By considering the flexibility and connectedness of a mesh with the surface properties of SLIPS, we show it is possible to create double-sided SLIPS materials with high droplet mobility and droplet control on both faces. We also exemplify the importance of flexibility using a mesh-based SLIPS pipe capable of withstanding laminar and turbulent flows for 180 and 90 minutes, respectively. Finally, we discuss how ideas of topology introduced by the SLIPS mesh might be extended to create completely new types of SLIPS systems, such as Mobius strips and auxetic metamaterials.


2019 ◽  
Vol 19 ◽  
pp. 33-46 ◽  
Author(s):  
Medina Hamidović ◽  
Werner Haselmayr ◽  
Andreas Grimmer ◽  
Robert Wille ◽  
Andreas Springer

Sign in / Sign up

Export Citation Format

Share Document