particulate mass
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 11 (21) ◽  
pp. 10214
Author(s):  
Muhammad Amin ◽  
Rizki Andre Handika ◽  
Rahmi Mulia Putri ◽  
Worradorn Phairuang ◽  
Mitsuhiko Hata ◽  
...  

Air sampling for 12 h diurnal and nocturnal periods was conducted at two monitoring sites with different characteristics in Jambi City, Sumatra Island, Indonesia. The sampling was done at a roadside site and a riverside site from August 2–9, and from August 7–13 in 2019, respectively. A cascade air sampler was used to obtain information on the status, characteristics and behavior of airborne particles with a particular focus on the ultrafine fraction (PM0.1). The number of light vehicles was best correlated with most PM size categories, while those of heavy vehicles and motorcycles with the 0.5–1 μm and with >10 μm for the nocturnal period, respectively. These findings suggest that there is a positive influence of traffic amount on the PM concentration. Using carbonaceous parameters related to heavy-vehicle emissions such as EC and soot-EC, HV emission was confirmed to account for the PM0.1 fraction more clearly in the roadside environment. The correlation between OC/EC and EC for 0.5–1 μm particles indicated that biomass burning has an influence on both in the diurnal period. A possible transboundary influence was shown as a shift in the PM0.1 fraction characteristic from “urban” to “biomass burning”.


2021 ◽  
pp. 146808742110475
Author(s):  
Joohan Kim ◽  
Jongwon Chung ◽  
Namho Kim ◽  
Seokwon Cho ◽  
Jaeyeop Lee ◽  
...  

Direct injection system is widely adopted in spark-ignition engines to achieve higher thermal efficiency, but it accompanies a penalty in particulate emission, especially when engine is not fully warmed-up. Split injection strategy is known to be an effective measure to reduce engine-out particulate emissions. To better understand the role of split injections, this study aims to analyze the effect of split injection strategy on the sources of soot formation using computational fluid dynamics simulation. To accurately predict changes in particulate mass and number associated with split injection strategy, it is vital that spray models be carefully validated against the experimental data since spray dynamics govern the formation of soot emission sources, such as local fuel-rich mixtures and wall-deposited fuel-films. To this end, a set of spray experiments for free sprays is performed to measure liquid penetration length and droplet size distribution, and hence a comprehensive validation is conducted for spray breakup models. Then, engine simulations are carried out to predict the change in soot sources according to split injection, and the trend of simulation results is compared against the measured engine-out particulate mass and number. Simulation results indicate that breakup model validation using both penetration length and droplet size data is critical for predicting fuel spray dynamics and formation of sources of soot emission. It is also revealed that the piston wetting decreases as the number of injections increases because less amount of fuel is injected when piston is closer to the injector. Lastly, the late evaporation of heavy gasoline components from fuel-film appears to be a significant contributor to soot precursors formation.


2021 ◽  
Vol 2 ◽  
Author(s):  
Xinyun Cui ◽  
Carl H. Lamborg ◽  
Chad R. Hammerschmidt ◽  
Yang Xiang ◽  
Phoebe J. Lam

The downward flux of sinking particles is a prominent Hg removal and redistribution process in the ocean; however, it is not well-constrained. Using data from three U.S. GEOTRACES cruises including the Pacific, Atlantic, and Arctic Oceans, we examined the mercury partitioning coefficient, Kd, in the water column. The data suggest that the Kd varies widely over three ocean basins. We also investigated the effect of particle concentration and composition on Kd by comparing the concentration of small-sized (1–51 μm) suspended particulate mass (SPM) as well as its compositional fractions in six different phases to the partitioning coefficient. We observed an inverse relationship between Kd and suspended particulate mass, as has been observed for other metals and known as the “particle concentration effect,” that explains much of the variation in Kd. Particulate organic matter (POM) and calcium carbonate (CaCO3) dominated the Hg partitioning in all three ocean basins while Fe and Mn could make a difference in some places where their concentrations are elevated, such as in hydrothermal plumes. Finally, our estimated Hg residence time has a strong negative correlation with average log bulk Kd, indicating that Kd has significant effect on Hg residence time.


2021 ◽  
Author(s):  
Angela C. Davis ◽  
Danny J. Menard ◽  
Andrew D. Clark ◽  
Joshua J. Cummins ◽  
Nels A. Olson

AbstractTo compare the transport of respiratory pathogens, computational fluid dynamics (CFD) simulations were performed to track particles released by coughing from a passenger on a Boeing 737 aircraft, and by a person in a comparable indoor commercial space. Simulation data were post-processed to calculate the amounts of particles inhaled by nearby persons in both environments. The effects of different airflow rates, placement of air inlets, positioning and distances between index (coughing) and susceptible (inhaling) persons were also analyzed. The removal of airborne particles from the indoor environment, due ventilation and deposition onto surfaces, was compared to that of an aircraft cabin. In an aircraft cabin 80% of the particles were removed 5 to 12 times faster than in the indoor commercial space; ultimately resulting in 7 times less particulate mass inhaled in the aircraft cabin.


Fuel ◽  
2021 ◽  
Vol 286 ◽  
pp. 119460
Author(s):  
Meng Jiang ◽  
Xiaowei Liu ◽  
Jinke Han ◽  
Zhaofeng Wang ◽  
Minghou Xu

2020 ◽  
Author(s):  
Vlassis A. Karydis ◽  
Alexandra P. Tsimpidi ◽  
Andrea Pozzer ◽  
Jos Lelieveld

Abstract. The acidity of atmospheric aerosols regulates the particulate mass, composition and toxicity, and has important consequences for public health, ecosystems and climate. Despite these broad impacts, the global distribution and evolution of aerosol acidity are unknown. We used the particular, comprehensive atmospheric multiphase chemistry – climate model EMAC to investigate the main factors that control aerosol acidity, and uncovered remarkable variability and unexpected trends during the past 50 years in different parts of the world. We find that alkaline compounds, notably ammonium, and to a lesser extent crustal cations, buffer the aerosol pH on a global scale. Given the importance of aerosols for the atmospheric energy budget, cloud formation, pollutant deposition and public health, alkaline species hold the key to control strategies for air quality and climate change.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Ji-Seob Choi ◽  
Woo-Tae Park

Abstract Recently, as the concentration of fine dust in the atmosphere has increased due to an increase in the use of fossil fuel power plants, automobiles, and factories, it has been increasingly important to measure fine dust in the atmosphere. This is because exposure to fine dust is closely related to the incidence of respiratory and cardiovascular diseases and eventually affects mortality. In this paper, we introduce a MEMS particle sensor based on the resonance frequency shift according to added particle mass. The actuation is driven by Aluminum nitride (AlN), and the total thickness is 2.8 μm. A laser doppler vibrometer (LDV), an optical measuring instrument, was used to measure the resonance frequency of the sensor. Airborne particles naturally were deposited on the sensor. To show the frequency shift according to the particle mass, the frequency shift was measured by dividing the case where the deposited particle mass was small and large. In each case, the frequency shift according to the deposited particle mass was predicted and compared with the frequency shift measured by LDV. It was shown that the deposited particle mass and frequency shift are proportional. The deposition of particulate mass was estimated by image analysis. The frequency shift caused by the particle mass deposited on the sensor was defined as the sensitivity of the sensor. The estimated sensitivity of the sensor is 0.219 to 0.354 kHz/pg.


Sign in / Sign up

Export Citation Format

Share Document