transition voltage
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 1)

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1448
Author(s):  
Noweir Ahmad Alghamdi

Contact resistance (Rc) characterizes the interface of source-drain electrodes/organic semiconductors and controls the injection efficiency of carriers in organic thin-film transistors (OTFTs). This research paper presents and assesses two methods for extracting the value of the contact resistance from the measured current-voltage characteristics of OTFTs made with various p-type organic semiconductors as active layers. These two methods are the transition voltage method (TVM) and the transfer line method (TLM). The obtained Rc values by the TVM method are in fair agreement with those obtained by TLM, with a maximum percentage of difference around 10%, demonstrating the accuracy of the used transition-voltage method. An analytical model was employed to calculate output characteristics in the linear regime of OTFTs made with various organic semiconductors using the contact resistance values obtained by the transition voltage method. The calculated results are in reasonably good agreement with the experimental ones of each fabricated device, which affirms the ability of the used model to characterize the charge transport correctly in these types of devices. It can be concluded that the used TVM method is not only an easy and practical method, but also a precise way for extracting Rc in OTFTs produced using different organic semiconductor materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao-Ting Chin ◽  
Jiri Klimes ◽  
I-Fan Hu ◽  
Ding-Rui Chen ◽  
Hai-Thai Nguyen ◽  
...  

AbstractWe here report on the direct observation of ferroelectric properties of water ice in its 2D phase. Upon nanoelectromechanical confinement between two graphene layers, water forms a 2D ice phase at room temperature that exhibits a strong and permanent dipole which depends on the previously applied field, representing clear evidence for ferroelectric ordering. Characterization of this permanent polarization with respect to varying water partial pressure and temperature reveals the importance of forming a monolayer of 2D ice for ferroelectric ordering which agrees with ab-initio and molecular dynamics simulations conducted. The observed robust ferroelectric properties of 2D ice enable novel nanoelectromechanical devices that exhibit memristive properties. A unique bipolar mechanical switching behavior is observed where previous charging history controls the transition voltage between low-resistance and high-resistance state. This advance enables the realization of rugged, non-volatile, mechanical memory exhibiting switching ratios of 106, 4 bit storage capabilities and no degradation after 10,000 switching cycles.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Sifan Li ◽  
Bochang Li ◽  
Xuewei Feng ◽  
Li Chen ◽  
Yesheng Li ◽  
...  

AbstractState-of-the-art memristors are mostly formed by vertical metal–insulator–metal (MIM) structure, which rely on the formation of conductive filaments for resistive switching (RS). However, owing to the stochastic formation of filament, the set/reset voltage of vertical MIM memristors is difficult to control, which results in poor temporal and spatial switching uniformity. Here, a two-terminal lateral memristor based on electron-beam-irradiated rhenium disulfide (ReS2) is realized, which unveils a resistive switching mechanism based on Schottky barrier height (SBH) modulation. The devices exhibit a forming-free, stable gradual RS characteristic, and simultaneously achieve a small transition voltage variation during positive and negative sweeps (6.3%/5.3%). The RS is attributed to the motion of sulfur vacancies induced by voltage bias in the device, which modulates the ReS2/metal SBH. The gradual SBH modulation stabilizes the temporal variation in contrast to the abrupt RS in MIM-based memristors. Moreover, the emulation of long-term synaptic plasticity of biological synapses is demonstrated using the device, manifesting its potential as artificial synapse for energy-efficient neuromorphic computing applications.


2020 ◽  
Vol 20 (4) ◽  
pp. 16-26
Author(s):  
Sudipta Sen ◽  
N. B. Manik

AbstractPresent work shows effect of 8 nm diameter and 30 nm diameter multi walled carbon nanotubes (MWCNT) on the barrier potential and trap concentration of Malachite Green (MG) dye based organic device. MWCNTs are basically a bundle of concentric single-walled carbon nanotubes with different diameters. In this work, ITO coated glass substrate and aluminium have been used as front electrode and back electrode respectively and the spin coating method is used to prepare the MG dye based organic device. It has been observed that both barrier potential and trap concentration are in correlation. Estimation of both these parameters has been done from current-voltage characteristics of the device to estimate the trap energy and the barrier potential of the device. Device turn-on voltage or the transition voltage is also calculated by using current-voltage characteristics. In presence of 8 nm diameter MWCNT, the transition voltage is reduced from 3.9 V to 2.37 V, the barrier potential is lowered to 0.97 eV from 1.12 eV and the trap energy is lowered to 0.028 eV from 0.046 eV whereas incorporation of 30 nm diameter MWCNT shows reduction of transition voltage from 3.9 V to 2.71 V and a reduction of barrier potential and trap concentration from 1.12 eV to 1.03 eV and from 0.046 eV to 0.035 eV respectively. Presence of both 8 nm diameter and 30 nm diameter MWCNT lowers trap energy approximately to 39% and 24% respectively and lowers barrier potential approximately to 13% and 8% respectively. Estimation of barrier potential is also done by Norde method which shows lowering of the value from 0.88 eV to 0.79 eV and from 0.88 eV to 0.84 eV in presence of both 8 nm and 30 nm diameter multi walled carbon nanotubes respectively. Calculation of barrier potential from both the I-V characteristics and Norde method are in unison with each other. Indication of enhancement of charge flow in the device can be ascribed to the truncated values of barrier potential and trap energy.


2020 ◽  
Vol 12 (4) ◽  
pp. 470-473
Author(s):  
Jungmoon Lim ◽  
Gahyun Ahn ◽  
Inho Jeong ◽  
Hyunwook Song

In this study, we report on charge transport through aryl alkane monolayers sandwiched between single-layer graphene (SLG) electrodes. Raman spectroscopy identified the chemically grafting of aryl diazonium compounds onto bottom SLG electrodes. Current densities of three different aryl alkane monolayers were exponentially deceased with a correct decay coefficient (β) as the length of a tunneling barrier increased. Transition voltage measurements for variable lengths of alkyl chains showed that the SLG/monolayer/SLG arrangement provides the formation of a valid tunneling junction to observe intrinsic charge transport properties of the incorporated molecules. This study demonstrated the possible application of the SLG electrodes to the test beds of molecular junctions.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1353
Author(s):  
Junsoo Ko ◽  
Minjae Lee

An inverter-based on-chip resistor capacitor (RC) oscillator with logic transition voltage (LTV) tracking feedback for circuit delay compensation is presented. In order to achieve good frequency stability, the proposed technique considers the entire inverter chain as a comparator block and changes the LTV to control the oscillation frequency. Furthermore, the negative feedback structure also reduces low-frequency offset phase noise. With a 1.8 V supply and at room temperature, the suggested oscillator operates at 18.13 MHz, consuming 245.7 μ W. Compared to the free-running case, the proposed technique reduces phase noise by 7.7 dB and 5.45 dB at 100 Hz and 1 kHz, respectively. The measured phase noise values are −60.09 dBc/Hz at 1 kHz with a figure of merit (FOM) of 151.35 dB/Hz, and −106.27 dBc/Hz at 100 KHz with an FOM of 157.53 dBc/Hz. The proposed oscillator occupies 0.056 mm2 in a standard 0.18 μ m CMOS process.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1103 ◽  
Author(s):  
Bruna Baggio ◽  
Cristiano Vicente ◽  
Silvia Pelegrini ◽  
Cristiani Plá Cid ◽  
Iuri Brandt ◽  
...  

The compound Prussian Blue (PB), and its reduced form Prussian White (PW) are nowadays considered, in applied and fundamental research groups, as potential materials for sustainable energy storage devices. In this work, these compounds were prepared by potentiostatic electrochemical synthesis, by using different deposition voltages and thicknesses. Thick, compact and uniform layers were characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Results have shown a well-defined transition voltage for growing Prussian Blue phases and a strong dependence of the morphology/growing orientation of the samples as a function of applied potential and thickness. For the negative potential tested of −0.10 V vs. SCE, a mixture of cubic and rhombohedral phases was observed.


Sign in / Sign up

Export Citation Format

Share Document