determinant line bundle
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Ilya Dumanski ◽  
Evgeny Feigin ◽  
Michael Finkelberg

Abstract We compute the spaces of sections of powers of the determinant line bundle on the spherical Schubert subvarieties of the Beilinson–Drinfeld affine Grassmannians. The answer is given in terms of global Demazure modules over the current Lie algebra.


Author(s):  
Ali Fathi ◽  
Asghar Ghorbanpour ◽  
Masoud Khalkhali

2016 ◽  
Vol 118 (2) ◽  
pp. 203 ◽  
Author(s):  
Aleksey Zinger

We provide a thorough construction of a system of compatible determinant line bundles over spaces of Fredholm operators, fully verify that this system satisfies a number of important properties, and include explicit formulas for all relevant isomorphisms between these line bundles. We also completely describe all possible systems of compatible determinant line bundles and compare the conventions and approaches used elsewhere in the literature.


2014 ◽  
Vol 25 (14) ◽  
pp. 1450122 ◽  
Author(s):  
Indranil Biswas ◽  
Georg Schumacher

Let X → S be a smooth projective surjective morphism of relative dimension n, where X and S are integral schemes over ℂ. Let L → X be a relatively very ample line bundle. For every sufficiently large positive integer m, there is a canonical isomorphism of the Deligne pairing 〈L,…,L〉 → S with the determinant line bundle [Formula: see text] (see [D. H. Phong, J. Ross and J. Sturm, Deligne pairings and the knudsen–Mumford expansion, J. Differential Geom. 78 (2008) 475–496]). If we fix a hermitian structure on L and a relative Kähler form on X, then each of the line bundles [Formula: see text] and 〈L,…,L〉 carries a distinguished hermitian structure. We prove that the above mentioned isomorphism between 〈L,…,L〉 → S and [Formula: see text] is compatible with these hermitian structures. This holds also for the isomorphism in [Deligne pairing and determinant bundle, Electron. Res. Announc. Math. Sci. 18 (2011) 91–96] between a Deligne paring and a certain determinant line bundle.


2006 ◽  
Vol 08 (06) ◽  
pp. 715-735 ◽  
Author(s):  
HAJIME FUJITA

We investigate functorial properties of two hermitian line bundles over the moduli space of flat SU(n)-connections on a closed oriented surface; that is, of the Chern–Simons line bundle and the determinant line bundle. We investigate actions of cyclic subgroups of the mapping class group on them. As a consequence, we show that if we modify the determinant line bundle by the Hodge bundle over the moduli space of Riemann surfaces, then these line bundles are functorially isomorphic. This implies two quantum Hilbert spaces defined by the Chern–Simons line bundle and the modified determinant line bundle are functorially isomorphic.


2002 ◽  
Vol 91 (1) ◽  
pp. 5 ◽  
Author(s):  
Johan L. Dupont ◽  
Flemming Lindblad Johansen

We study generalized determinant line bundles for families of principal bundles and connections. We explore the connections of this line bundle and give conditions for the uniqueness of such. Furthermore we construct for families of bundles and connections over manifolds with boundary, a generalized Chern-Simons invariant as a section of a determinant line bundle.


Sign in / Sign up

Export Citation Format

Share Document