ash melting behavior
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 2)

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1282
Author(s):  
Veronika Chaloupková ◽  
Tatiana Ivanova ◽  
Petr Hutla ◽  
Monika Špunarová

Rice straw is potentially an appropriate feedstock material for biofuel production, since a huge amount of this postharvest residue is generated every year. The transformation of such agricultural biomass into densified products with a higher energy value and their subsequent combustion is associated with several questions. One of them is that rice straw exhibits a large formation of ash during combustion; thus, it is essential to know the nature of its ash melting behavior. Generally, during the combustion of straw biomass, ash sintering occurs in relatively low temperatures, resulting in the damaging of heating equipment. This negative aspect can be overcome by the addition of calcium-based additives. This paper aimed to study the ash melting behavior at a laboratory scale and to determine the ash melting points of rice straw mixed with calcium carbonate (CaCO3) and calcium hydroxide (Ca(OH)2) in different proportional ratios. The standardly produced ash samples from the rice straw obtained from Cambodia were constantly heated up in a muffle furnace, and characteristic temperatures of ash melting, i.e., shrinkage, deformation, hemisphere, and flow temperature, were recorded. The results showed that increasing the additive ratio did not bring linear growth of the melting temperatures. The addition of 1% CaCO3 showed an optimal positive impact of higher ash melting temperatures, and thus a better ability to abate the sintering of the rice straw ash.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2774
Author(s):  
Margareta Novian Cahyanti ◽  
Tharaka Rama Krishna C. Doddapaneni ◽  
Marten Madissoo ◽  
Linnar Pärn ◽  
Indrek Virro ◽  
...  

Abundant biomass is a potential energy source. However, it possesses several challenges when considered for energy applications. Torrefaction, a thermal pretreatment process can improve the properties of biomass as energy source. This study focused on comparing effect of torrefaction operating parameters on agricultural and wood wastes properties as fuel. The physiochemical properties, composition, moisture-biomass interaction and ash melting behavior were determined. The result show that higher torrefaction temperature and longer residence time increased lignin content, reduced hemicellulose and cellulose content. The moisture uptake of torrefied biomass was reduced in the range 2.47–9.94% compared with raw biomass depending on torrefaction temperature that indicate torrefied biomass was more hydrophobic than raw biomass. The moisture adsorption isotherm curve shows type II isotherm based on the Brunauer-Emmett-Teller’s (BET) classification and was best described by the Oswin model. In addition, torrefaction treatment showed significant influence on the melting behavior of the biomass ash. Especially for agricultural wastes, the fouling tendency shifted from serious range to low range with torrefaction treatment. Torrefaction showed promise for improving fuel characteristics of the studied biomass.


Fuel ◽  
2021 ◽  
Vol 286 ◽  
pp. 119483
Author(s):  
Yao Xu ◽  
Ming Zhai ◽  
Yichi Zhang ◽  
Qianhao Shen ◽  
Gaurav Kumar ◽  
...  

2019 ◽  
Vol 33 (7) ◽  
pp. 5840-5848 ◽  
Author(s):  
Meheretu Jaleta Dirbeba ◽  
Anders Brink ◽  
Maria Zevenhoven ◽  
Nikolai DeMartini ◽  
Daniel Lindberg ◽  
...  

Author(s):  
Ma Haidong ◽  
Wang Yungang ◽  
Zhao Qinxin

Two typical pulverized Zhundong coal with different calcium oxide contents in ash were selected to use in this work. The liquid nitrogen was used to cool ash rapidly at different temperatures, in order to avoid changes in mineral condition. The ash melting behavior and mineral transition mechanism, especially calcium-bearing minerals was studied by ash melting point test platform, XRD, XRF, SEM and EDS. The results showed that the different states of calcium are the dominant reasons for different sintering behaviors of coal ash. The calcium-bearing minerals in ash, such as calcium oxide (CaO), calcium silicate (CaSiO3), gehlenite (2CaO·Al2O3·SiO2), and anorthite (CaO·Al2O3·2SiO2), etc., are the most important factors influencing the initial sintering behavior of coal ash in the temperature range from 1373K to 1473K under oxidizing atmosphere during coal combustion. That is the reason why ash starts to melt at relatively high temperature during ash melting behavior in laboratory, but has severe slagging and contamination characteristic at low temperature during coal combustion in boilers. The research achievments have important guiding significance for the design of partially or completely burning Zhundong coal boiler as well as its long-term safe and efficient operation. (CSPE)


Author(s):  
Xiaojiang Wu ◽  
Jianwen Zhang ◽  
Xiang Zhang ◽  
Nan Chen ◽  
Kai Yan

This paper is aimed to clarify the ash deposition/slagging behavior of blended coal with Xinjiang High-Alkali coal (HA coal) during the combustion process in boiler. One typical Xinjiang coal (HA coal) and another low-alkali coal (LA coal) have been mixed to study the ash melting behavior as a function of coal blending ratio, through the use of AFTs test, XRD, SEM-EDX characterization of ash samples and 3MW pilot-scale test. The results indicate that, the trend of AFTs is not linearly related to the blending ratio of coal mixtures. Instead, it is highly linked with the changes on the liquidus temperature from the ternary phase diagram systems. The initial melting temperature of HA coal ash is approximately 275°C lower than that of LA coal ash due to the existence of alkali and alkaline earth metals, although it has relative higher ash fusion temperature. The mixing of LA coal is not only beneficial to reduce the amount of vaporized sodium, but it also increases the initial melting temperature of blended ash due to the physical and chemical reactions between alkali and silica particles. The higher content of Na gas was formed during HA coal combustion process due to the promoted effect of the existence of Cl in HA coal. Some low melting minerals, such as Na2SO4, Na3Fe(SO4), NaS2O7, were found as the dominate minerals in its deposit ash on heat transfer tubes in the temperature range 650∼1000°C when combustion HA coal. When blended with other LA coal, the amount of deposit ash was decreased and the shape of it became looser due to some high melting minerals were found in its deposit ash, such as quartz and mullite etc. The optimum blending ratio of LA coal is 20% for its safe operation for HA coal.


Sign in / Sign up

Export Citation Format

Share Document