crater detection
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 43)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Lagain ◽  
G. K. Benedix ◽  
K. Servis ◽  
D. Baratoux ◽  
L. S. Doucet ◽  
...  

AbstractThe only martian rock samples on Earth are meteorites ejected from the surface of Mars by asteroid impacts. The locations and geological contexts of the launch sites are currently unknown. Determining the impact locations is essential to unravel the relations between the evolution of the martian interior and its surface. Here we adapt a Crater Detection Algorithm that compile a database of 90 million impact craters, allowing to determine the potential launch position of these meteorites through the observation of secondary crater fields. We show that Tooting and 09-000015 craters, both located in the Tharsis volcanic province, are the most likely source of the depleted shergottites ejected 1.1 million year ago. This implies that a major thermal anomaly deeply rooted in the mantle under Tharsis was active over most of the geological history of the planet, and has sampled a depleted mantle, that has retained until recently geochemical signatures of Mars’ early history.


2021 ◽  
Vol 13 (17) ◽  
pp. 3467
Author(s):  
Zihao Chen ◽  
Jie Jiang

A crater detection and recognition algorithm is the key to pose estimation based on craters. Due to the changing viewing angle and varying height, the crater is imaged as an ellipse and the scale changes in the landing camera. In this paper, a robust and efficient crater detection and recognition algorithm for fusing the information of sequence images for pose estimation is designed, which can be used in both flying in orbit around and landing phases. Our method consists of two stages: stage 1 for crater detection and stage 2 for crater recognition. In stage 1, a single-stage network with dense anchor points (dense point crater detection network, DPCDN) is conducive to dealing with multi-scale craters, especially small and dense crater scenes. The fast feature-extraction layer (FEL) of the network improves detection speed and reduces network parameters without losing accuracy. We comprehensively evaluate this method and present state-of-art detection performance on a Mars crater dataset. In stage 2, taking the encoded features and intersection over union (IOU) of craters as weights, we solve the weighted bipartite graph matching problem, which is matching craters in the image with the previously identified craters and the pre-established craters database. The former is called “frame-frame match,” or FFM, and the latter is called “frame-database match”, or FDM. Combining the FFM with FDM, the recognition speed is enabled to achieve real-time on the CPU (25 FPS) and the average recognition precision is 98.5%. Finally, the recognition result is used to estimate the pose using the perspective-n-point (PnP) algorithm and results show that the root mean square error (RMSE) of trajectories is less than 10 m and the angle error is less than 1.5 degrees.


2021 ◽  
Vol 13 (16) ◽  
pp. 3193
Author(s):  
Yutong Jia ◽  
Gang Wan ◽  
Lei Liu ◽  
Jue Wang ◽  
Yitian Wu ◽  
...  

Impact craters are the most prominent features on the surface of the Moon, Mars, and Mercury. They play an essential role in constructing lunar bases, the dating of Mars and Mercury, and the surface exploration of other celestial bodies. The traditional crater detection algorithms (CDA) are mainly based on manual interpretation which is combined with classical image processing techniques. The traditional CDAs are, however, inefficient for detecting smaller or overlapped impact craters. In this paper, we propose a Split-Attention Networks with Self-Calibrated Convolution (SCNeSt) architecture, in which the channel-wise attention with multi-path representation and self-calibrated convolutions can generate more prosperous and more discriminative feature representations. The algorithm first extracts the crater feature model under the well-known target detection R-FCN network framework. The trained models are then applied to detecting the impact craters on Mercury and Mars using the transfer learning method. In the lunar impact crater detection experiment, we managed to extract a total of 157,389 impact craters with diameters between 0.6 and 860 km. Our proposed model outperforms the ResNet, ResNeXt, ScNet, and ResNeSt models in terms of recall rate and accuracy is more efficient than that other residual network models. Without training for Mars and Mercury remote sensing data, our model can also identify craters of different scales and demonstrates outstanding robustness and transferability.


2021 ◽  
Author(s):  
Emily Law ◽  
Natalie Gallegos ◽  
Charles Nainan ◽  
Shan Malhotra

<p>The Moon Trek portal (https://trek.nasa.gov/moon) aims to provide the scientific community as well as the general public access to lunar data collected from various lunar missions. The portal also offers a suite of tools with the goal of allowing users to analyze the data for the purposes of education, mission planning, and research. Such tools include elevation profilers, crater and rock detection, lighting analysis, and slope analysis to name a few. Moon Trek is further expanding its analytic capabilities by adding feature detection to its toolset.</p> <p>The feature detector, similar to the rock and crater detection tools, seeks to detect features on the lunar surface using orbital imagery. Unlike the detection tools currently available on the Moon Trek, the feature detector is built to be generic, trainable, and able to seek out any feature when provided a training set for the feature in question. The tool currently supports detection of craters, rocks, and lunar pits.</p> <p>The feature detector takes a deep learning approach in finding features from orbital imagery. The model used in the latest detection tool is a Faster Region Based Convolutional Neural Network (Faster-RCNN) with a finetuning approach. More succinctly, the finetuning approach uses a model which has been developed and trained on a different and larger training set. The classification layer is replaced to detect features of the chosen domain (rocks, pits, craters, etc.) The model is then trained with smaller training sets.</p> <p>Currently we use panchromatic Narrow Angle Camera (NAC) images from the Lunar Reconnaissance Orbiter Camera (LROC) as input. However, the model can be trained on orbital imagery from any mission. The tool’s output includes the NAC image with bounding boxes over detected and an ascii file showing pixel coordinates of each detected feature.</p>


2021 ◽  
Author(s):  
John Fairweather ◽  
Anthony Lagain ◽  
Kosta Servis ◽  
Gretchen Benedix ◽  
Phil Bland

2021 ◽  
Vol 13 (14) ◽  
pp. 2819
Author(s):  
Sudong Zang ◽  
Lingli Mu ◽  
Lina Xian ◽  
Wei Zhang

Lunar craters are very important for estimating the geological age of the Moon, studying the evolution of the Moon, and for landing site selection. Due to a lack of labeled samples, processing times due to high-resolution imagery, the small number of suitable detection models, and the influence of solar illumination, Crater Detection Algorithms (CDAs) based on Digital Orthophoto Maps (DOMs) have not yet been well-developed. In this paper, a large number of training data are labeled manually in the Highland and Maria regions, using the Chang’E-2 (CE-2) DOM; however, the labeled data cannot cover all kinds of crater types. To solve the problem of small crater detection, a new crater detection model (Crater R-CNN) is proposed, which can effectively extract the spatial and semantic information of craters from DOM data. As incomplete labeled samples are not conducive for model training, the Two-Teachers Self-training with Noise (TTSN) method is used to train the Crater R-CNN model, thus constructing a new model—called Crater R-CNN with TTSN—which can achieve state-of-the-art performance. To evaluate the accuracy of the model, three other detection models (Mask R-CNN, no-Mask R-CNN, and Crater R-CNN) based on semi-supervised deep learning were used to detect craters in the Highland and Maria regions. The results indicate that Crater R-CNN with TTSN achieved the highest precision (of 91.4% and 88.5%, respectively) in the Highland and Maria regions, even obtaining the highest recall and F1 score. Compared with Mask R-CNN, no-Mask R-CNN, and Crater R-CNN, Crater R-CNN with TTSN had strong robustness and better generalization ability for crater detection within 1 km in different terrains, making it possible to detect small craters with high accuracy when using DOM data.


2021 ◽  
Vol 13 (11) ◽  
pp. 2116
Author(s):  
Chia-Yu Hsu ◽  
Wenwen Li ◽  
Sizhe Wang

This paper introduces a new GeoAI solution to support automated mapping of global craters on the Mars surface. Traditional crater detection algorithms suffer from the limitation of working only in a semiautomated or multi-stage manner, and most were developed to handle a specific dataset in a small subarea of Mars’ surface, hindering their transferability for global crater detection. As an alternative, we propose a GeoAI solution based on deep learning to tackle this problem effectively. Three innovative features are integrated into our object detection pipeline: (1) a feature pyramid network is leveraged to generate feature maps with rich semantics across multiple object scales; (2) prior geospatial knowledge based on the Hough transform is integrated to enable more accurate localization of potential craters; and (3) a scale-aware classifier is adopted to increase the prediction accuracy of both large and small crater instances. The results show that the proposed strategies bring a significant increase in crater detection performance than the popular Faster R-CNN model. The integration of geospatial domain knowledge into the data-driven analytics moves GeoAI research up to the next level to enable knowledge-driven GeoAI. This research can be applied to a wide variety of object detection and image analysis tasks.


2021 ◽  
Vol 13 (9) ◽  
pp. 1826
Author(s):  
Yifan Hu ◽  
Jun Xiao ◽  
Lupeng Liu ◽  
Long Zhang ◽  
Ying Wang

Impact craters refer to the most salient features on the moon surface. They are of huge significance for analyzing the moon topography, selecting the lunar landing site and other lunar exploration missions, etc. However, existing methods of impact crater detection have been largely implemented on the optical image data, thereby causing them to be sensitive to the sunlight. Thus, these methods can easily achieve unsatisfactory detection results. In this study, an original two-stage small crater detection method is proposed, which is sufficiently effective in addressing the sunlight effects. At the first stage of the proposed method, a semantic segmentation is conducted to detect small impact craters by fully exploiting the elevation information in the digital elevation map (DEM) data. Subsequently, at the second stage, the detection accuracy is improved under the special post-processing. As opposed to other methods based on DEM images, the proposed method, respectively, increases the new crusher percentage, recall and crusher level F1 by 4.89%, 5.42% and 0.67%.


2021 ◽  
Vol 1 (1) ◽  
pp. 49-63
Author(s):  
Haingja Seo ◽  
Dongyoung Kim ◽  
Sang-Min Park ◽  
Myungjin Choi

Sign in / Sign up

Export Citation Format

Share Document