curvature operator
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 49)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Tsz-Kiu Aaron Chow

Abstract In this paper, we study the Ricci flow on manifolds with boundary. In the paper, we substantially improve Shen’s result [Y. Shen, On Ricci deformation of a Riemannian metric on manifold with boundary, Pacific J. Math. 173 1996, 1, 203–221] to manifolds with arbitrary initial metric. We prove short-time existence and uniqueness of the solution, in which the boundary becomes instantaneously totally geodesic for positive time. Moreover, we prove that the flow we constructed preserves natural boundary conditions. More specifically, if the initial metric has a convex boundary, then the flow preserves positive curvature operator and the PIC1, PIC2 conditions. Moreover, if the initial metric has a two-convex boundary, then the flow preserves the PIC condition.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zhiqian He ◽  
Yanzhong Zhao ◽  
Liangying Miao

AbstractWe study the Dirichlet problem for the prescribed mean curvature equation in Minkowski space $$ \textstyle\begin{cases} \mathcal{M}(u)+ v^{\alpha }=0\quad \text{in } B, \\ \mathcal{M}(v)+ u^{\beta }=0\quad \text{in } B, \\ u|_{\partial B}=v|_{\partial B}=0, \end{cases} $$ { M ( u ) + v α = 0 in  B , M ( v ) + u β = 0 in  B , u | ∂ B = v | ∂ B = 0 , where $\mathcal{M}(w)=\operatorname{div} ( \frac{\nabla w}{\sqrt{1-|\nabla w|^{2}}} )$ M ( w ) = div ( ∇ w 1 − | ∇ w | 2 ) and B is a unit ball in $\mathbb{R}^{N} (N\geq 2)$ R N ( N ≥ 2 ) . We use the index theory of fixed points for completely continuous operators to obtain the existence, nonexistence and uniqueness results of positive radial solutions under some corresponding assumptions on α, β.


Author(s):  
Giovanna Citti ◽  
Gianmarco Giovannardi ◽  
Manuel Ritoré

AbstractWe consider in this paper an area functional defined on submanifolds of fixed degree immersed into a graded manifold equipped with a Riemannian metric. Since the expression of this area depends on the degree, not all variations are admissible. It turns out that the associated variational vector fields must satisfy a system of partial differential equations of first order on the submanifold. Moreover, given a vector field solution of this system, we provide a sufficient condition that guarantees the possibility of deforming the original submanifold by variations preserving its degree. As in the case of singular curves in sub-Riemannian geometry, there are examples of isolated surfaces that cannot be deformed in any direction. When the deformability condition holds we compute the Euler–Lagrange equations. The resulting mean curvature operator can be of third order.


Author(s):  
Peter Petersen ◽  
Matthias Wink

Abstract We show that compact Kähler manifolds have the rational cohomology ring of complex projective space provided a weighted sum of the lowest three eigenvalues of the Kähler curvature operator is positive. This follows from a more general vanishing and estimation theorem for the individual Hodge numbers. We also prove an analogue of Tachibana’s theorem for Kähler manifolds.


Author(s):  
Zhiqian He ◽  
Liangying Miao

Abstract In this paper, we study the number of classical positive radial solutions for Dirichlet problems of type (P) − d i v ∇ u 1 − | ∇ u | 2 = λ f ( u )   in B 1 , u = 0                     on ∂ B 1 , $$\left\{\begin{aligned}\hfill & -\mathrm{d}\mathrm{i}\mathrm{v}\left(\frac{\nabla u}{\sqrt{1-\vert \nabla u{\vert }^{2}}}\right)=\lambda f(u)\quad \text{in}\enspace {B}_{1},\hfill \\ \hfill & u=0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \text{on}\enspace \partial {B}_{1},\enspace \hfill \end{aligned}\right.$$ where λ is a positive parameter, B 1 = { x ∈ R N : | x | < 1 } ${B}_{1}=\left\{x\in {\mathbb{R}}^{N}:\vert x\vert {< }1\right\}$ , f : [0, ∞) → [0, ∞) is a continuous function. Using the fixed point index in a cone, we prove the results on both uniqueness and multiplicity of positive radial solutions of (P).


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1691
Author(s):  
Shaohong Wang ◽  
Zhan Zhou

Partial difference equations have received more and more attention in recent years due to their extensive applications in diverse areas. In this paper, we consider a Dirichlet boundary value problem of the partial difference equation involving the mean curvature operator. By applying critical point theory, the existence of at least three solutions is obtained. Furthermore, under some appropriate assumptions on the nonlinearity, we respectively show that this problem admits at least two or three positive solutions by means of a strong maximum principle. Finally, we present two concrete examples and combine with images to illustrate our main results.


2021 ◽  
Vol 11 (1) ◽  
pp. 198-211
Author(s):  
Sijia Du ◽  
Zhan Zhou

Abstract Apartial discrete Dirichlet boundary value problem involving mean curvature operator is concerned in this paper. Under proper assumptions on the nonlinear term, we obtain some feasible conditions on the existence of multiple solutions by the method of critical point theory. We further separately determine open intervals of the parameter to attain at least two positive solutions and an unbounded sequence of positive solutions with the help of the maximum principle.


Author(s):  
Silas Longwap ◽  
Gukat G. Bitrus ◽  
Chibuisi Chigozie

An 8 dimensional Walker manifold (M; g) is a strict walker manifold if we can choose a coordinate system fx1; x2; x3; x4; x5; x6; x7; x8g on (M,g) such that any function f on the manfold (M,g), f(x1; x2; x3; x4; x5; x6; x7; x8) = f(x5; x6; x7; x8): In this work, we dene a Non-strict eight dimensional walker manifold as the one that we can choose the coordinate system such that for any f in (M; g); f(x1; x2; x3; x4; x5; x6; x7; x8) = f(x1; x2; x3; x4): We derive cononical form of the Levi-Civita connection, curvature operator, (0; 4)-curvature tansor, the Ricci tensor, Weyl tensorand study some of the properties associated with the class of Non-strict 8 dimensionalWalker manifold. We investigate the Einstein property and establish a theorem for the metric to be locally conformally at.


Sign in / Sign up

Export Citation Format

Share Document