combinatorial structures
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Navid Nasr Esfahani ◽  
Douglas R. Stinson

<p style='text-indent:20px;'>All-or-nothing transforms (AONTs) were originally defined by Rivest [<xref ref-type="bibr" rid="b14">14</xref>] as bijections from <inline-formula><tex-math id="M1">\begin{document}$ s $\end{document}</tex-math></inline-formula> input blocks to <inline-formula><tex-math id="M2">\begin{document}$ s $\end{document}</tex-math></inline-formula> output blocks such that no information can be obtained about any input block in the absence of any output block. Numerous generalizations and extensions of all-or-nothing transforms have been discussed in recent years, many of which are motivated by diverse applications in cryptography, information security, secure distributed storage, etc. In particular, <inline-formula><tex-math id="M3">\begin{document}$ t $\end{document}</tex-math></inline-formula>-AONTs, in which no information can be obtained about any <inline-formula><tex-math id="M4">\begin{document}$ t $\end{document}</tex-math></inline-formula> input blocks in the absence of any <inline-formula><tex-math id="M5">\begin{document}$ t $\end{document}</tex-math></inline-formula> output blocks, have received considerable study.</p><p style='text-indent:20px;'>In this paper, we study three generalizations of AONTs that are motivated by applications due to Pham et al. [<xref ref-type="bibr" rid="b13">13</xref>] and Oliveira et al. [<xref ref-type="bibr" rid="b12">12</xref>]. We term these generalizations rectangular, range, and restricted AONTs. Briefly, in a rectangular AONT, the number of outputs is greater than the number of inputs. A range AONT satisfies the <inline-formula><tex-math id="M6">\begin{document}$ t $\end{document}</tex-math></inline-formula>-AONT property for a range of consecutive values of <inline-formula><tex-math id="M7">\begin{document}$ t $\end{document}</tex-math></inline-formula>. Finally, in a restricted AONT, the unknown outputs are assumed to occur within a specified set of "secure" output blocks. We study existence and non-existence and provide examples and constructions for these generalizations. We also demonstrate interesting connections with combinatorial structures such as orthogonal arrays, split orthogonal arrays, MDS codes and difference matrices.</p>


Author(s):  
Ojonugwa Ejima ◽  
◽  
Abor Isa Garba ◽  
Kazeem Olalekan Aremu

Let G be a fnite group with the set of subgroups of G denoted by S(G), then the subgroup graphs of G denoted by T(G) is a graph which set of vertices is S(G) such that two vertices H, K in S(G) (H not equal to K)are adjacent if either H is a subgroup of K or K is a subgroup of H. In this paper, we introduce the Subgroup graphs T associated with G. We investigate some algebraic properties and combinatorial structures of Subgroup graph T(G) and obtain that the subgroup graph T(G) of G is never bipartite. Further, we show isomorphism and homomorphism of the Subgroup graphs of finite groups. Let be a finite group with the set of subgroups of denoted by , then the subgroup graphs of denoted by is a graph which set of vertices is such that two vertices , are adjacent if either is a subgroup of or is a subgroup of . In this paper, we introduce the Subgroup graphs associated with . We investigate some algebraic properties and combinatorial structures of Subgroup graph and obtain that the subgroup graph of is never bipartite. Further, we show isomorphism and homomorphism of the Subgroup graphs of finite groups.


10.37236/9252 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Yuki Irie

The $P$-position sets of some combinatorial games have special combinatorial structures. For example, the $P$-position set of the hexad game, first investigated by Conway and Ryba, is the block set of the Steiner system $S(5, 6, 12)$ in the shuffle numbering, denoted by $D_{\text{sh}}$. However, few games were known to be related to Steiner systems in this way. For a given Steiner system, we construct a game whose $P$-position set is its block set. By using constructed games, we obtain the following two results. First, we characterize $D_{\text{sh}}$ among the 5040 isomorphic $S(5, 6, 12)$ with point set $\{0, 1, ..., 11\}$. For each $S(5, 6, 12)$, our construction produces a game whose $P$-position set is its block set. From $D_{\text{sh}}$, we obtain the hexad game, and this game is characterized as the unique game with the minimum number of positions among the obtained 5040 games. Second, we characterize projective Steiner triple systems by using game distributions. Here, the game distribution of a Steiner system $D$ is the frequency distribution of the numbers of positions in games obtained from Steiner systems isomorphic to $D$. We find that the game distribution of an $S(t, t + 1, v)$ can be decomposed into symmetric components and that a Steiner triple system is projective if and only if its game distribution has a unique symmetric component.


Author(s):  
Maciej Bendkowski ◽  
Olivier Bodini ◽  
Sergey Dovgal

Abstract Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of large random combinatorial structures, such as context-free words, various tree-like data structures, maps, tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters, allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain sub-patterns in generated strings. However, such a flexible control requires an additional and nontrivial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system description length, the number of tuning parameters, the number of combinatorial classes in the specification, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series of practical examples, including rational, algebraic, and so-called Pólya specifications. We show how our method can be adapted to a broad range of less typical combinatorial constructions, including symmetric polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitutions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its benchmark results.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Domenico Cantone ◽  
Jean-Paul Doignon ◽  
Alfio Giarlotta ◽  
Stephen Watson

Convex geometries (Edelman and Jamison, 1985) are finite combinatorial structures dual to union-closed antimatroids or learning spaces.  We define an operation of resolution for convex geometries, which replaces each element of a base convex geometry by a fiber convex geometry.  Contrary to what happens for similar constructions–compounds of hypergraphs, as in Chein, Habib and Maurer (1981), and compositions of set systems, as in Möhring and Radermacher)–, resolutions of convex geometries always yield a convex geometry.   We investigate resolutions of special convex geometries: ordinal and affine.  A resolution of ordinal convex geometries is again ordinal, but a resolution of affine convex geometries may fail to be affine.  A notion of primitivity, which generalize the corresponding notion for posets, arises from resolutions: a convex geometry is primitive if it is not a resolution of smaller ones.  We obtain a characterization of affine convex geometries that are primitive, and compute the number of primitive convex geometries on at most four elements.  Several open problems are listed. 


Author(s):  
Manuel Ceballos

In this paper, the link between combinatorial structures and alternative algebras is studied, determining which configurations are associated with those algebras. Moreover, the isomorphism classes of each 2-dimensional configuration associated with these algebras is analyzed, providing a new method to classify them. In order to complement the theoretical study, two algorithmic methods are implemented: the first one constructs and draws the (pseudo)digraph associated with a given alternative algebra and the second one tests if a given combinatorial structure is associated with some alternative algebra.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1825
Author(s):  
Viliam Ďuriš ◽  
Gabriela Pavlovičová ◽  
Dalibor Gonda ◽  
Anna Tirpáková

The presented paper is devoted to an innovative way of teaching mathematics, specifically the subject combinatorics in high schools. This is because combinatorics is closely connected with the beginnings of informatics and several other scientific disciplines such as graph theory and complexity theory. It is important in solving many practical tasks that require the compilation of an object with certain properties, proves the existence or non-existence of some properties, or specifies the number of objects of certain properties. This paper examines the basic combinatorial structures and presents their use and learning using relations through the Placemat method in teaching process. The effectiveness of the presented innovative way of teaching combinatorics was also verified experimentally at a selected high school in the Slovak Republic. Our experiment has confirmed that teaching combinatorics through relationships among talented children in mathematics is more effective than teaching by a standard algorithmic approach.


Author(s):  
Janardhan Rao Doppa

Scientists and engineers in diverse domains need to perform expensive experiments to optimize combinatorial spaces, where each candidate input is a discrete structure (e.g., sequence, tree, graph) or a hybrid structure (mixture of discrete and continuous design variables). For example, in hardware design optimization over locations of processing cores and communication links for data transfer, design evaluation involves performing a computationally-expensive simulation. These experiments are often performed in a heuristic manner by humans and without any formal reasoning. In this paper, we first describe the key challenges in solving these problems in the framework of Bayesian optimization (BO) and our progress over the last five years in addressing these challenges. We also discuss exciting sustainability applications in domains such as electronic design automation, nanoporous materials science, biological sequence design, and electric transportation systems.


Author(s):  
Oluwaseun A. Otekunrin ◽  
Kehinde O. Alawode

Group Divisible PBIBDs are important combinatorial structures with diverse applications. In this paper, we provided a construction technique for Group Divisible (v-1,k,0,1) PBIBDs. This was achieved by using techniques described in literature to construct Nim addition tables of order 2n, 2≤n≤5 and (k2,b,r,k,1)Resolvable BIBDs respectively. A “block cutting” procedure was thereafter used to generate corresponding Group Divisible (v-1,k,0,1) PBIBDs from the (k2,b,r,k,1)Resolvable BIBDs. These procedures were streamlined and implemented in MATLAB. The generated designs are regular with parameters(15,15,4,4,5,3,0,1);(63,63,8,8,9,7,0,1);(255,255,16,16,17,15,0,1) and (1023,1023,32,32,33,31,0,1). The MATLAB codes written are useful for generating the blocks of the designs which can be easily adapted and utilized in other relevant studies.   Also, we have been able to establish a link between the game of Nim and Group Divisible (v-1,k,0,1) PBIBDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaodong Li ◽  
Farhan Khan ◽  
Gohar Ali ◽  
Lubna Gul ◽  
Muhammad Sarwar

Hypergraph is a generalization of graph in which an edge can join any number of vertices. Hypergraph is used for combinatorial structures which generalize graphs. In this research work, the notion of hypergraphical metric spaces is introduced, which generalizes many existing spaces. Some fixed point theorems are studied in the corresponding spaces. To show the authenticity of the established work, nontrivial examples and applications are also provided.


Sign in / Sign up

Export Citation Format

Share Document