pressurized fluids
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 118 (51) ◽  
pp. e2023433118
Author(s):  
Marcello Gori ◽  
Vito Rubino ◽  
Ares J. Rosakis ◽  
Nadia Lapusta

Fluids are known to trigger a broad range of slip events, from slow, creeping transients to dynamic earthquake ruptures. Yet, the detailed mechanics underlying these processes and the conditions leading to different rupture behaviors are not well understood. Here, we use a laboratory earthquake setup, capable of injecting pressurized fluids, to compare the rupture behavior for different rates of fluid injection, slow (megapascals per hour) versus fast (megapascals per second). We find that for the fast injection rates, dynamic ruptures are triggered at lower pressure levels and over spatial scales much smaller than the quasistatic theoretical estimates of nucleation sizes, suggesting that such fast injection rates constitute dynamic loading. In contrast, the relatively slow injection rates result in gradual nucleation processes, with the fluid spreading along the interface and causing stress changes consistent with gradually accelerating slow slip. The resulting dynamic ruptures propagating over wetted interfaces exhibit dynamic stress drops almost twice as large as those over the dry interfaces. These results suggest the need to take into account the rate of the pore-pressure increase when considering nucleation processes and motivate further investigation on how friction properties depend on the presence of fluids.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Petrosino ◽  
L. De Siena

AbstractAmbient noise polarizes inside fault zones, yet the spatial and temporal resolution of polarized noise on gas-bearing fluids migrating through stressed volcanic systems is unknown. Here we show that high polarization marks a transfer structure connecting the deforming centre of the caldera to open hydrothermal vents and extensional caldera-bounding faults during periods of low seismic release at Campi Flegrei caldera (Southern Italy). Fluids pressurize the Campi Flegrei hydrothermal system, migrate, and increase stress before earthquakes. The loss of polarization (depolarization) of the transfer and extensional structures maps pressurized fluids, detecting fluid migrations after seismic sequences. After recent intense seismicity (December 2019-April 2020), the transfer structure appears sealed while fluids stored in the east caldera have moved further east. Our findings show that depolarized noise has the potential to monitor fluid migrations and earthquakes at stressed volcanoes quasi-instantaneously and with minimum processing.


2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Cristian Montanaro ◽  
Anette Kærgaard Mortensen ◽  
Tobias B. Weisenberger ◽  
Donald B. Dingwell ◽  
Bettina Scheu

AbstractKrafla central volcano in Iceland has experienced numerous basaltic fissure eruptions through its history, the most recent examples being the Mývatn (1724‒1729) and Krafla Fires (1975–1984). The Mývatn Fires opened with a steam-driven eruption that produced the Víti crater. A magmatic intrusion has been inferred as the trigger perturbing the geothermal field hosting Víti, but the cause(s) of the explosive response remain uncertain. Here, we present a detailed stratigraphic reconstruction of the breccia erupted from Víti crater, characterize the lithologies involved in the explosions, reconstruct the pre-eruptive setting, fingerprint the eruption trigger and source depth, and reveal the eruption mechanisms. Our results suggest that the Víti eruption can be classified as a magmatic-hydrothermal type and that it was a complex event with three eruption phases. The injection of rhyolite below a pre-existing convecting hydrothermal system likely triggered the Víti eruption. Heating and pressurization of shallow geothermal fluid initiated disruption of a scoria cone “cap” via an initial series of small explosions involving a pre-existing altered weak zone, with ejection of fragments from at least 60-m depth. This event was superseded by larger, broader, and dominantly shallow explosions (~ 200 m depth) driven by decompression of hydrothermal fluids within highly porous, poorly compacted tuffaceous hyaloclastite. This second phase was triggered when pressurized fluids broke through the scoria cone complex “cap”. At the same time, deep-rooted explosions (~ 1-km depth) began to feed the eruption with large inputs of fragmented rhyolitic juvenile and host rock from a deeper zone. Shallow explosions enlarging the crater dominated the final phase. Our results indicate that at Krafla, as in similar geological contexts, shallow and thin hyaloclastite sequences hosting hot geothermal fluids and capped by low-permeability lithologies (e.g. altered scoria cone complex and/or massive, thick lava flow sequence) are susceptible to explosive failure in the case of shallow magmatic intrusion(s).


Author(s):  
Kazuki Yasuda ◽  
Daisuke Nakata ◽  
Masaharu Uchiumi

Abstract As a propellant for hybrid rocket engines using liquid oxidizer and solid fuel and for liquid rocket engines, the use of self-pressurized fluids such as nitrous oxide has become widespread. Since these fluids can be self-pressurized by their high saturated vapor pressure, the propulsion system becomes smaller and simpler. However, this self-pressurization generally forms a gas-liquid two-phase flow by flashing or cavitation. This flow is considered highly unsteady because the temperature and pressure greatly change with the discharge process. In this study, unsteady flow characteristics due to self-pressurization were experimentally obtained by conducting many cold flow tests with carbon dioxide as self-pressurizing fluids. As a result, it was clarified that the fluid temperature dropped about 10-15 K with the pressure drop due to feed line pressure loss during the discharge process. From these experimental results, we estimated the bubble growth and void fraction change that would satisfy the temperature drop. In this paper, the obtained test results and estimated temperature drop are reported.


2021 ◽  
Author(s):  
Luca De Siena ◽  
Simona Petrosino

Abstract Ambient noise polarizes inside low-velocity fault zones, yet the spatial and temporal resolution of polarized noise on gas-bearing fluids migrating through stressed volcanic systems is unknown. Pressurized fluids increase stress and lead to volcanic earthquakes; imaging their location in real time would be a giant leap toward forecasting eruptions and monitoring volcanic unrest. Here, we show that depolarized noise detects fluid injections and migrations leading to earthquakes inside the laterally-stressed hydrothermal systems of Campi Flegrei caldera (Southern Italy). A polarized transfer structure connects the deforming centre of the caldera to open hydrothermal vents and extensional caldera-bounding faults during periods of low seismic release. Fluids depolarize the transfer structure and pressurize the hydrothermal system, building up stress before earthquakes and migrating after seismic sequences. During sequences, fluid migration pathways connect the location of the last eruption (Monte Nuovo, 1538AD) with the part of the eastern caldera trapped between transfer and extensional structures. After recent intense seismicity (December 2019-April 2020), the transfer structure appears sealed while fluids stored in the east caldera have moved further east. Depolarized noise has the potential to monitor fluid migrations and earthquakes at stressed volcanoes quasi-instantaneously and with minimum processing.


Author(s):  
Marleny D.A. Saldaña ◽  
Eduardo Rodriguez Martinez ◽  
Jasreen Sekhon ◽  
Hung Vo

SPE Journal ◽  
2021 ◽  
Vol 26 (06) ◽  
pp. 3488-3504
Author(s):  
Z. Li ◽  
J. M. Vandenbossche ◽  
A. T. Iannacchione ◽  
A. Vuotto

Summary Experiments on oil well cement (OWC) slurries were performed using the newly developed laboratory-scale wellbore simulation chamber (WSC). The WSC can simulate hydrostatic pressure reduction in the cemented annulus and possible gas migration under representative conditions. Forensic analysis shows that pressurized fluids can result in porous cement and gas channeling during cement slurry gelation. The effects of different factors on slurry pore pressure were also studied, including formation permeability, initial overburden pressure (OBP) representing the depth of interest, wellbore temperature, water/cement (w/c) ratio, cement composition, and the use of a calcium chloride (CaCl2)-based accelerator. By analyzing the temperature history of hydrating cement using degree of hydration, the evolution of cement hydration was characterized for slurry designs cured at different hydration rates. This provides the opportunity to parameterize the slurry designs and other important factors associated with wellbore conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhi-Feng Wang ◽  
Xing-Bin Peng ◽  
Yong Liu ◽  
Wen-Chieh Cheng ◽  
Ya-Qiong Wang ◽  
...  

During the jet grouting process, large volumes of high pressurized fluids injected into the soils will cause significant ground displacements, which may bring harmful impacts on surrounding environment. Therefore, it is essential to provide an accurate estimation of the ground displacement in the design stage. Based on multiple nonlinear regression (MNLR) and support vector regression (SVR), the prediction approaches are established, respectively. The column radius (Rc), Young’s modulus (E), and distance from column center to target point (LOA) are selected as the input parameters, while the displacement of target point A at the radial direction (δA) is taken as the output parameter. Comparisons results on the prediction performance of ground displacements indicate that the MNLR-based approach has a better prediction effect. The design charts of the MNLR-based approach for predicting the ground displacement are created, which will be helpful for the practicing engineers to get a quick estimation.


2020 ◽  
Author(s):  
Shujuan Mao ◽  
Albanne Lecointre ◽  
Qingyu Wang ◽  
Robert van der Hilst ◽  
Michel Campillo

<p>Monitoring temporal changes in seismic wavespeed can inform our understanding of the evolution of crustal rocks’ mechanical state caused by perturbations in stress field, damages, and fluids. Furthermore, imaging these time-lapse changes in space can help unravel the response of rocks with different elastic properties. In this study, we analyze the spatiotemporal variations of seismic wavespeed in Southern California from 2007 to 2017. We compute the Green’s functions by daily cross-correlations using ambient noise at over three hundred broadband seismic stations. Instead of calculating simply the linear regressions of travel-time shifts over lag-times, which only resolves homogeneous changes, we scrutinize the variations of travel-time shifts at different lag-times and frequencies using coda-wave sensitivity kernels, in order to probe the spatial distribution of wavespeed changes. The long-term and large-scale analysis allows us to investigate the mechanical response of different crustal materials to various transient processes. As an example we use the 2010 Mw 7.2 El Mayor-Cucapah Earthquake (EMC) and show that large coseismic wavespeed reductions occur in Salton Sea area and the Los Angeles sedimentary basin. In the latter region, the ground motion amplification and high susceptibility of sedimentary materials explain the remote signature of the earthquake. In the Salton Sea region, particularly in the geothermal area with highly pressurized fluids, the non-linear crustal response illustrated by wavespeed changes can be analyzed with regard to the high-level micro-seismicity triggered by EMC.</p>


2020 ◽  
Author(s):  
daniela tarallo ◽  
Giuseppe Cavuoto ◽  
Vincenzo Di Fiore ◽  
Nicola Pelosi ◽  
Michele Punzo ◽  
...  

<p>In this study we show an 2D Electrical Resistivity Tomography (ERT) survey acquired in Agnano site pre (Dec 5<sup>th</sup>, 2019) and post (Dec 12<sup>th</sup>, 2019) earthquake events occurred in Pisciarelli-Solfatara areas. This earthquake swarm consisted of sequence of 34 earthquakes with Magnitude (Md) -1.1≤Md≤2.8 at depths between 0.9 and 2.3 km. In particular, the earthquake of Dec 06<sup>th</sup>, 2019 at 00:17 UTC with Md = 2.8 (depth 2 km) was the maximum recorded event since bradyseismic crisis began in 2005.</p><p>The ERT survey allow us to identify the main structural boundaries (and their associated fluid circulations) defining the shallow architecture of the Agnano volcano. The hydrothermal system is identified by very low values of the electrical resistivity (<20 Ω m). Its downwards extension is clearly limited by the lava and pyroclastic fragments, which are relatively resistive (>100 Ω m). The resistivity values are increased after the main shock. This increase in resistivity may have been caused by a change in the state of stress and a decrease in pore pressure (subsequent depressurization). Previously to the earthquake, an increase in pressurized fluids has been observed which have reduced the resistivity values. The present observation suggests that the temporal variation of the resistivity values is related to the variation of the pore fluid pressure in the source area of the swarm, facilitated by earthquake and the subsequent fluid diffusion. The combination of these qualitative results with structural analysis leads to a synthetic model of magmatic and hydrothermal fluids circulation inside the Agnano area, which may be useful for the assessment of potential hazards associated with a renewal of fluid pressurization, and a possibly associated partial flank-failure.</p>


Sign in / Sign up

Export Citation Format

Share Document