vertical ground motions
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 2)

Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 243-259
Author(s):  
Ali Y. Al-Attraqchi ◽  
M. Javad Hashemi ◽  
Riadh Al-Mahaidi

2021 ◽  
Vol 21 (2) ◽  
pp. 703-722
Author(s):  
Gonéri Le Cozannet ◽  
Déborah Idier ◽  
Marcello de Michele ◽  
Yoann Legendre ◽  
Manuel Moisan ◽  
...  

Abstract. Sea-level rise due to anthropogenic climate change is projected not only to exacerbate extreme events such as cyclones and storms but also to cause more frequent chronic flooding occurring at high tides under calm weather conditions. Chronic flooding occasionally takes place today in the low-lying areas of the Petit Cul-de-sac marin (Guadeloupe, West Indies, French Antilles). This area includes critical industrial and harbor and major economic infrastructures for the islands. As sea level rises, concerns are growing regarding the possibility of repeated chronic flooding events, which would alter the operations at these critical coastal infrastructures without appropriate adaptation. Here, we use information on past and future sea levels, vertical ground motion, and tides to assess times of emergence of chronic flooding in the Petit Cul-de-sac marin. For RCP8.5 (Representative Concentration Pathway 8.5; i.e., continued growth of greenhouse gas emissions), the number of flood days is projected to increase rapidly after the emergence of the process so that coastal sites will be flooded 180 d a year within 2 decades of the onset of chronic flooding. For coastal locations with the lowest altitude, we show that the reconstructed number of floods is consistent with observations known from a previous survey. Vertical ground motions are a key source of uncertainty in our projections. Yet, our satellite interferometric synthetic-aperture radar results show that the local variability in this subsidence is smaller than the uncertainties in the technique, which we estimate to be between 1 (standard deviation of measurements) and 5 mm/yr (upper theoretical bound). Despite these uncertainties, our results imply that adaptation pathways considering a rapid increase in recurrent chronic flooding are required for the critical port and industrial and commercial center of Guadeloupe. Similar processes are expected to take place in many low-elevation coastal zones worldwide, including on other tropical islands. The method used in this study can be applied to other locations, provided tide gauge records and local knowledge of vertical ground motions are available. We argue that identifying times of emergence of chronic flooding events is urgently needed in most low-lying coastal areas, because adaptation requires decades to be implemented, whereas chronic flooding hazards can worsen drastically within years of the first event being observed.


Author(s):  
Hao Xing ◽  
John X. Zhao

ABSTRACT This study evaluated the source, path, and site effects of the vertical ground motions from the western and the southwestern parts of China (referred to as SWC hereafter) using 2403 records from 449 earthquakes, including the records from the 2008 Mw 7.9 Wenchuan earthquake and its aftershocks. Only 677 records are from 73 mainshocks, and 259 events do not have a known focal mechanism. There is a large magnitude gap in the dataset, for example, there is only one event between Mw 6.3 and Mw 7.8. The average numbers of records per recording station and per earthquake are small, and many sites do not have a measured shear-wave velocity profile. These shortcomings make it difficult to develop a robust ground-motion prediction equation (GMPE) without adding overseas data or using a reference GMPE developed from a large dataset. We compared the SWC dataset with five recent GMPEs, three based on the Next Generation Attenuation-West2 dataset, one based on Europe and the Middle East, and one based on the shallow-crustal and upper-mantle earthquakes in Japan. We decomposed the total residuals for each model into constant term, between-event, and within-event residuals and calculated the corresponding standard deviations. The maximum log likelihood and the standard deviations suggest that, among the five GMPEs, the Zhao et al. (2017) model without the normal-fault term may be the most suitable GMPE for a probabilistic seismic hazard study in the SWC region. Correction functions based on simple magnitude, path, and site effect parameters were used to correct the residuals and to obtain the leftover between- and within-event standard deviations. These standard deviations appear to suggest that the GMPE from Zhao et al. (2017) without a normal-fault term may be the most suitable reference GMPE for developing a new GMPE for the SWC region.


Sign in / Sign up

Export Citation Format

Share Document