helper cell
Recently Published Documents


TOTAL DOCUMENTS

1411
(FIVE YEARS 213)

H-INDEX

106
(FIVE YEARS 10)

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Seong-A Ju ◽  
Quang-Tam Nguyen ◽  
Thu-Ha T. Nguyen ◽  
Jae-Hee Suh ◽  
Won G. An ◽  
...  

Sepsis is characterized by an initial net hyperinflammatory response, followed by a period of immunosuppression, termed immunoparalysis. During this immunosuppressive phase, patients may have difficulty eradicating invading pathogens and are susceptible to life-threatening secondary hospital-acquired infections. Due to progress in antimicrobial treatment and supportive care, most patients survive early sepsis. Mortality is more frequently attributed to subsequent secondary nosocomial infections and multiorgan system failure. 6-Gingerol is the major pharmacologically active component of ginger. Although it is known to exhibit a variety of biological activities, including anti-inflammation and antioxidation, the role of 6-gingerol in sepsis-induced immune dysfunction remains elusive. Thus, we investigated whether 6-gingerol improves septic host response to infections during sepsis. 6-Gingerol-treated mice showed significantly lower mortality in polymicrobial sepsis induced by cecal ligation and puncture LPS via enhanced bacterial clearance in the peritoneum, blood, and organs (liver, spleen, and kidney) and inhibited the production of TNF-α and IL-6 in TLR2 and/or TLR4-stimulated macrophages. In addition, we demonstrated that survival improvement of secondary infection following septic insult was associated with an initial response of enhanced neutrophil numbers and function at the infection site, reduced apoptosis of immune cells, and a shift from a T helper cell type 2 (Th2) to a T helper cell type 1 (Th1) cytokine balance in the hypoinflammation phase. Our overall findings suggest that 6-gingerol potentially restores sepsis-induced immune dysfunction by shifting the balance of Th1/Th2 and by regulating apoptosis of immune cells.


2021 ◽  
Author(s):  
Fengyang Lei ◽  
Naiwen Cui ◽  
Chengxin Zhou ◽  
James Chodosh ◽  
Demetrios D Vavvas ◽  
...  

Colony-stimulating factor 1 receptor (CSF1R) inhibition has been proposed as a specific method for microglia depletion. However, recent work revealed that in addition to microglia, CSF1R inhibition also affects other innate immune cells, such as peripheral monocytes and tissue-resident macrophages of the lung, liver, spleen, and peritoneum. Here, we show that this effect is not restricted to innate immune cells only, but extends to the adaptive immune compartment. CSF1R inhibition alters the transcriptional profile of bone marrow cells that control T helper cell activation. In vivo or ex vivo inhibition of CSF1R profoundly changes the transcriptional profile of CD4+ cells and suppresses Th1 and Th2 differentiation in directionally stimulated and unstimulated cells and independently of microglia depletion. Given that T cells also contribute in CNS pathology, these effects may have practical implications in the interpretation of relevant experimental data.


Cell ◽  
2021 ◽  
Author(s):  
Philip A. Mudd ◽  
Anastasia A. Minervina ◽  
Mikhail V. Pogorelyy ◽  
Jackson S. Turner ◽  
Wooseob Kim ◽  
...  

Inflammation ◽  
2021 ◽  
Author(s):  
Qi Chen ◽  
Siji Nian ◽  
Yingchun Ye ◽  
Dan Liu ◽  
Hong Yu ◽  
...  
Keyword(s):  

Cell ◽  
2021 ◽  
Author(s):  
Can Cui ◽  
Jiawei Wang ◽  
Eric Fagerberg ◽  
Ping-Min Chen ◽  
Kelli A. Connolly ◽  
...  

Immunity ◽  
2021 ◽  
Author(s):  
Siyuan Wan ◽  
Lu Ni ◽  
Xiaohong Zhao ◽  
Xindong Liu ◽  
Wei Xu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yoan Eliasse ◽  
Edouard Leveque ◽  
Lucile Garidou ◽  
Louise Battut ◽  
Brienne McKenzie ◽  
...  

Acne is a multifactorial disease driven by physiological changes occurring during puberty in the pilosebaceous unit (PSU) that leads to sebum overproduction and a dysbiosis involving notably Cutibacterium acnes. These changes in the PSU microenvironment lead to a shift from a homeostatic to an inflammatory state. Indeed, immunohistochemical analyses have revealed that inflammation and lymphocyte infiltration can be detected even in the infraclinical acneic stages, highlighting the importance of the early stages of the disease. In this study, we utilized a robust multi-pronged approach that included flow cytometry, confocal microscopy, and bioinformatics to comprehensively characterize the evolution of the infiltrating and resident immune cell populations in acneic lesions, beginning in the early stages of their development. Using a discovery cohort of 15 patients, we demonstrated that the composition of immune cell infiltrate is highly dynamic in nature, with the relative abundance of different cell types changing significantly as a function of clinical lesion stage. Within the stages examined, we identified a large population of CD69+ CD4+ T cells, several populations of activated antigen presenting cells, and activated mast cells producing IL-17. IL-17+ mast cells were preferentially located in CD4+ T cell rich areas and we showed that activated CD4+ T cells license mast cells to produce IL-17. Our study reveals that mast cells are the main IL-17 producers in the early stage of acne, underlying the importance of targeting the IL-17+ mast cell/T helper cell axis in therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document