total flux
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 62
Author(s):  
Elena Alekseenko ◽  
Bernard Roux ◽  
Konstantin Kuznetsov

The present study concerns the erosion and transport of severely contaminated sediments in a Canal. It begins in the context of an engineering project aimed to re-introduce a forced convection at the entrance of this Canal by pumping marine water. The local wind is often strong enough to overpass the resuspension threshold; thus, there is a serious risk of downstream contamination of a Mediterranean lagoon. So, the goal is to evaluate this risk as a function of the pumping rate; this contamination is transported by the fine suspended particles. Different scenarios are investigated to determine the downstream transport of suspensions in terms of runoff. These scenarios (of 24 h) contains a succession of 3 periods: constant wind speed, wind slowdown and calm, for two opposite wind directions. Special attention is devoted to the modeling of complex mechanisms of erosion and resuspension during wind periods, deposition during windless periods and sediment consolidation. The main results concern the total flux of the suspended particles through the exit of the Canal at the confluence with the lagoon. It is shown that even for moderate runoff (<6 m3/s) this total flux is large enough, not only during the wind period, but also after several hours of calm.


2021 ◽  
Vol 57 (2) ◽  
pp. 023003
Author(s):  
Rod Cross

Abstract The current in the secondary coil of a transformer acts to oppose the flux generated by current in the primary coil, by Lenz’s law. According to most physics textbooks, the total flux is then zero, so transformers should stop working. Something is missing in the textbook accounts.


Author(s):  
Adrian Ortega ◽  
Luis Benet ◽  
Hernán Larralde

Abstract We study, analytically and numerically, a simple $\mathcal{PT}$-symmetric tight-binding ring with an onsite energy $a$ at the gain and loss sites. We show that if $a\neq 0$, the system generically exhibits an unbroken PT -symmetric phase. We study the nature of the spectrum in terms of the singularities in the complex parameter space as well as the behavior of the eigenstates at large values of the gain and loss strength. We find that in addition to the usual exceptional points, there are “diabolical points”, and inverse exceptional points at which complex eigenvalues reconvert into real eigenvalues. We also study the transport through the system. We calculate the total flux from the source to the drain, and how it splits along the branches of the ring. We find that while usually the density flows from the source to the drain, for certain eigenstates a stationary “backflow” of density from the drain to the source along one of the branches can occur. We also identify two types of singular eigenstates, i.e. states that do not depend on the strength of the gain and loss, and classify them in terms of their transport properties.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 231
Author(s):  
Sindhujha Kumaran ◽  
Livia Ludhova ◽  
Ömer Penek ◽  
Giulio Settanta

Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso in Italy. Since the start of its data-taking in May 2007, it has provided several measurements of low-energy neutrinos from various sources. At the base of its success lie unprecedented levels of radio-purity and extensive thermal stabilization, both resulting from a years-long effort of the collaboration. Solar neutrinos, emitted in the Hydrogen-to-Helium fusion in the solar core, are important for the understanding of our star, as well as neutrino properties. Borexino is the only experiment that has performed a complete spectroscopy of the pp chain solar neutrinos (with the exception of the hep neutrinos contributing to the total flux at 10−5 level), through the detection of pp, 7Be, pep, and 8B solar neutrinos and has experimentally confirmed the existence of the CNO fusion cycle in the Sun. Borexino has also detected geoneutrinos, antineutrinos from the decays of long-lived radioactive elements inside the Earth, that can be exploited as a new and unique tool to study our planet. This paper reviews the most recent Borexino results on solar and geoneutrinos, from highlighting the key elements of the analyses up to the discussion and interpretation of the results for neutrino, solar, and geophysics.


2021 ◽  
Vol 45 (3) ◽  
pp. 418-426
Author(s):  
M. Toscani ◽  
S. Martínez

The SUPPOSe enhanced deconvolution algorithm relies in assuming that the image source can be described by an incoherent superposition of virtual point sources of equal intensity and finding the number and position of such virtual sources. In this work we describe the recent advances in the implementation of the method to gain resolution and remove artifacts due to the presence of fluorescent molecules close enough to the image frame boundary. The method was modified removing the invariant used before given by the product of the flux of the virtual sources times the number of virtual sources, and replacing it by a new invariant given by the total flux within the frame, thus allowing the location of virtual sources outside the frame but contributing to the signal inside the frame.


Author(s):  
A. A. Fedotov ◽  
◽  
G. M. Karelin ◽  

To detect inhomogeneities in the thermal radiation of exoplanet HD209458b, based on observations of the Spitzer space telescope processing and modeling of the light curves of secondary transits (eclipses) were carried out. Current work is the basis for the mapping of the temperature distribution on the dayside of the exoplanet. Tidal and electromagnetic star-planet interactions, together with climate effects, lead to nonuniform heating of the surface. We obtained that the depth of the eclipse was 0.101±0.009% of the total flux of the system and is consistent with the results of other works.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Geoffroy Berthelot ◽  
Liubov Tupikina ◽  
Min-Yeong Kang ◽  
Bernard Sapoval ◽  
Denis S. Grebenkov

Abstract The evolution of complex transport networks is investigated under three strategies of link removal: random, intentional attack and “Pseudo-Darwinian” strategy. At each evolution step and regarding the selected strategy, one removes either a randomly chosen link, or the link carrying the strongest flux, or the link with the weakest flux, respectively. We study how the network structure and the total flux between randomly chosen source and drain nodes evolve. We discover a universal power-law decrease of the total flux, followed by an abrupt transport collapse. The time of collapse is shown to be determined by the average number of links per node in the initial network, highlighting the importance of this network property for ensuring safe and robust transport against random failures, intentional attacks and maintenance cost optimizations.


2020 ◽  
Vol 640 ◽  
pp. A121 ◽  
Author(s):  
A. Groot ◽  
L. Rossi ◽  
V. J. H. Trees ◽  
J. C. Y. Cheung ◽  
D. M. Stam

Context. Understanding the total flux and polarization signals of Earth-like planets and their spectral and temporal variability is essential for the future characterization of such exoplanets. Aims. We provide computed total (F) and linearly (Q and U) and circularly (V) polarized fluxes, and the degree of polarization P of sunlight that is reflected by a model Earth, to be used for instrument designs, optimizing observational strategies, and/or developing retrieval algorithms. Methods. We modeled a realistic Earth-like planet using one year of daily Earth-observation data: cloud parameters (distribution, optical thickness, top pressure, and particle effective radius), and surface parameters (distribution, surface type, and albedo). The Stokes vector of the disk-averaged reflected sunlight was computed for phase angles α from 0° to 180°, and for wavelengths λ from 350 to 865 nm. Results. The total flux F is one order of magnitude higher than the polarized flux Q, and Q is two and four orders of magnitude higher than U and V, respectively. Without clouds, the peak-to-peak daily variations due to the planetary rotation increase with increasing λ for F, Q, and P, while they decrease for U and V. Clouds modify but do not completely suppress the variations that are due to rotating surface features. With clouds, the variation in F increases with increasing λ, while in Q, it decreases with increasing λ, except at the largest phase angles. In earlier work, it was shown that with oceans, Q changes color from blue through white to red. The α where the color changes increases with increasing cloud coverage. Here, we show that this unique color change in Q also occurs when the oceans are partly replaced by continents, with or without clouds. The degree of polarization P shows a similar color change. Our computed fluxes and degree of polarization will be made publicly available.


2020 ◽  
Author(s):  
Neil P. Hindley ◽  
Corwin J. Wright ◽  
Alan M. Gadian ◽  
Lars Hoffmann ◽  
John K. Hughes ◽  
...  

Abstract. Atmospheric gravity waves are key drivers of the transfer of energy and momentum between the layers of the Earth’s atmosphere. The accurate representation of these waves in General Circulation Models (GCMs) however has proved very challenging. This is because large parts of the gravity wave spectrum are at scales that are near or below the resolution of global GCMs. This is especially relevant for small isolated mountainous islands such as South Georgia (54° S, 36° W) in the Southern Ocean. Observations reveal the island to be an intense source of stratospheric gravity waves, but their momentum fluxes can be under-represented in global models due to its small size. This is a crucial limitation, since the inadequate representation of gravity waves near 60° S during winter has been linked to the long-standing "cold-pole problem", where the southern stratospheric polar vortex breaks up too late in spring by several weeks. Here we address a fundamental question: when a model is allowed to run at very high spatial resolution over South Georgia, how realistic are the simulated gravity waves compared to observations? To answer this question, we present a 3-D comparison between satellite gravity wave observations and a high resolution model over South Georgia. We use a dedicated high-resolution run (1.5 km horizontal grid, 118 vertical levels) of the Met Office Unified Model over South Georgia and coincident 3-D satellite observations from NASA AIRS/Aqua during July 2013 and June–July 2015. First, model winds are validated with coincident radiosonde observations. The AIRS observational filter is then applied to the model output to make the two data sets comparable. A 3-D S-transform method is used to measure gravity-wave amplitudes, wavelengths, directional momentum fluxes and intermittency in the model and observations. Our results show that although the timing of gravity wave activity in the model closely matches observations, area-averaged momentum fluxes are generally up to around 25 % lower than observed. Further, we find that 72 % of the total flux in the model region is located downwind of the island, compared to only 57 % in the AIRS measurements. Directly over the island, the model exhibits higher individual flux measurements but these fluxes are more intermittent than in observations, with 90 % of the total flux carried by just 22 % of wave events, compared to 32 % for AIRS. Observed gravity wave fluxes also appear to dissipate more quickly with increasing height than in the model, suggesting a greater role for wave-mean flow interactions in reality. Finally, spectral analysis of the wave fields suggests that the model over-estimates gravity wave fluxes at short horizontal scales directly over the island, but under-estimates fluxes from larger horizontal scale non-orographic waves in the region, leading to a lower average value overall. Our results indicate that, although increasing model resolution is important, it is also important to ensure that variability in the background wind vector and role of non-orographic waves are accurately simulated in order to achieve realistic gravity wave activity over the Southern Ocean in future GCMs.


Sign in / Sign up

Export Citation Format

Share Document