novel delivery systems
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Sara Assadpour ◽  
Mohammad Reza Shiran ◽  
Peyman Asadi ◽  
Javad Akhtari ◽  
Amirhossein Sahebkar

Sumatriptan (ST) is a commonly prescribed drug for treating migraine. The efficiency of several routes of ST administration has been investigated. Recently, the intranasal route with different delivery systems has gained interest owing to its fast-acting and effectiveness. The present study is aimed at reviewing the available studies on novel delivery systems for intranasal ST administration. The oral route of ST administration is common but complicated with some problems. Gastroparesis in patients with migraine may reduce the absorption and effectiveness of ST upon oral use. Furthermore, the gastrointestinal (GI) system and hepatic metabolism can alter the pharmacokinetics and clinical effects of ST. The bioavailability of conventional nasal liquids is low due to the deposition of a large fraction of the delivered dose of a drug in the nasal cavity. Several delivery systems have been utilized in a wide range of preclinical and clinical studies to enhance the bioavailability of ST. The beneficial effects of the dry nasal powder of ST (AVP-825) have been proven in clinical studies. Moreover, other delivery systems based on microemulsions, microspheres, and nanoparticles have been introduced, and their higher bioavailability and efficacy were demonstrated in preclinical studies. Based on the extant findings, harnessing novel delivery systems can improve the bioavailability of ST and enhance its effectiveness against migraine attacks. However, further clinical studies are needed to approve the safety and efficacy of employing such systems in humans.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 697
Author(s):  
Lisa Myrseth Hemmingsen ◽  
Nataša Škalko-Basnet ◽  
May Wenche Jøraholmen

Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan’s potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2053
Author(s):  
Adelina-Gabriela Niculescu ◽  
Alexandra Cătălina Bîrcă ◽  
Alexandru Mihai Grumezescu

Nucleic acids represent a promising lead for engineering the immune system. However, naked DNA, mRNA, siRNA, and other nucleic acids are prone to enzymatic degradation and face challenges crossing the cell membrane. Therefore, increasing research has been recently focused on developing novel delivery systems that are able to overcome these drawbacks. Particular attention has been drawn to designing lipid and polymer-based nanoparticles that protect nucleic acids and ensure their targeted delivery, controlled release, and enhanced cellular uptake. In this respect, this review aims to present the recent advances in the field, highlighting the possibility of using these nanosystems for therapeutic and prophylactic purposes towards combatting a broad range of infectious, chronic, and genetic disorders.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1892
Author(s):  
Haojie Chen ◽  
Hao Ji ◽  
Xiangjun Kong ◽  
Pengyu Lei ◽  
Qinsi Yang ◽  
...  

Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expressions of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria. Globally, BGs have been used as vaccine delivery systems and vaccine adjuvants. There is an increasing interest in the development of novel delivery systems that are based on BGs for biomedical applications. Due to intact reservation of bacterial cell membranes, BGs have an inherent immunogenicity, which enables targeted drug delivery and controlled release. As carrier vehicles, BGs protect drugs from interference by external factors. In recent years, there has been an increasing interest in BG-based delivery systems against tumors, inflammation, and infection, among others. Herein, we reviewed the preparation methods for BGs, interactions between BGs and the host, and further highlighted research progress in BG development.


2021 ◽  
Vol 27 ◽  
Author(s):  
Fatemeh Sadoughi ◽  
Jamal Hallajzadeh ◽  
Zatollah Asemi ◽  
Mohammad Ali Mansournia ◽  
Bahman Yousefi

: It has become clear that targeted therapy is one of the best options for decreasing the unpleasant side effects of existing common methods and reducing the number of deaths occurred due to many types of cancer. Biocompatible and non-toxic delivery systems are provided by nanomedicine for aiding targeted therapy in many diseases containing cancer. Cervical cancer (CC) is not only the most common gynecological cancer but also is ranked as the fourth common cancer between both men and women. Chemotherapy, radiotherapy, surgery, and immunotherapy are the approaches, which are being used for treating CC patients. However, more efficacy of these methods can be achieved with the help of nanomedicine and novel delivery systems. Nanocellulose is one of the agents used for designing these systems in order to deliver different drugs to a diversity of cancerous cells. In this review, we aim to investigate the competency of nanocellulose for establishing novel therapeutic methods for cervical cancer. We hope that our results help develop more drug delivery systems for targeted therapy to reduce the side effects and induce the efficacy of anti-cancer drugs.


2021 ◽  
Vol 14 (10) ◽  
pp. 946
Author(s):  
Bianca Enaru ◽  
Sonia Socaci ◽  
Anca Farcas ◽  
Carmen Socaciu ◽  
Corina Danciu ◽  
...  

Liposome-based delivery systems have been studied and used more frequently in recent years due to their advantages, such as low toxicity, specificity, and the ability to protect the encapsulated substance from environmental factors, which could otherwise degrade the active compound and reduce its effectiveness. Given these benefits, many researchers have encapsulated polyphenols in liposomes, thus increasing their bioavailability and stability. Similarly, polyphenols encapsulated in liposomes are known to produce more substantial effects on targeted cells than unencapsulated polyphenols, while having minimal cytotoxicity in healthy cells. Although polyphenols play a role in preventing many types of disease and generally have beneficial effects on health, we solely focused on their chemopreventive effects on cancer through liposomes in this review. Our goal was to summarize the applicability and efficacy of liposomes encapsulated with different classes of polyphenols on several types of cancer, thus opening the opportunity for future studies based on these drug delivery systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2467
Author(s):  
Shei Li Chung ◽  
Maxine Swee-Li Yee ◽  
Ling-Wei Hii ◽  
Wei-Meng Lim ◽  
Mui Yen Ho ◽  
...  

Recent advancements in nanotechnology have improved our understanding of cancer treatment and allowed the opportunity to develop novel delivery systems for cancer therapy. The biological complexities of cancer and tumour micro-environments have been shown to be highly challenging when treated with a single therapeutic approach. Current co-delivery systems which involve delivering small molecule drugs and short-interfering RNA (siRNA) have demonstrated the potential of effective suppression of tumour growth. It is worth noting that a considerable number of studies have demonstrated the synergistic effect of co-delivery systems combining siRNA and small molecule drugs, with promising results when compared to single-drug approaches. This review focuses on the recent advances in co-delivery of siRNA and small molecule drugs. The co-delivery systems are categorized based on the material classes of drug carriers. We discuss the critical properties of materials that enable co-delivery of two distinct anti-tumour agents with different properties. Key examples of co-delivery of drug/siRNA from the recent literature are highlighted and discussed. We summarize the current and emerging issues in this rapidly changing field of research in biomaterials for cancer treatments.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 988
Author(s):  
Carmen Teresa Celis-Giraldo ◽  
Julio López-Abán ◽  
Antonio Muro ◽  
Manuel Alfonso Patarroyo ◽  
Raúl Manzano-Román

Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.


Sign in / Sign up

Export Citation Format

Share Document