malate synthase
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 29)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
Vol 22 (19) ◽  
pp. 10435
Author(s):  
Yingning Wang ◽  
Fang Ma ◽  
Jixian Yang ◽  
Haijuan Guo ◽  
Delin Su ◽  
...  

Biodegradation of 1,4-dioxane (dioxane) contamination has gained much attention for decades. In our previous work, we isolated a highly efficient dioxane degrader, Xanthobacter sp. YN2, but the underlying mechanisms of its extraordinary degradation performance remained unresolved. In this study, we performed a comparative transcriptome analysis of YN2 grown on dioxane and citrate to elucidate its genetic degradation mechanism and investigated the transcriptomes of different dioxane degradation stages (T0, T24, T48). We also analyzed the transcriptional response of YN2 over time during which the carbon source switched from citrate to dioxane. The results indicate that strain YN2 was a methylotroph, which provides YN2 a major advantage as a pollutant degrader. A large number of genes involved in dioxane metabolism were constitutively expressed prior to dioxane exposure. Multiple genes related to the catabolism of each intermediate were upregulated by treatment in response to dioxane. Glyoxylate metabolism was essential during dioxane degradation by YN2, and the key intermediate glyoxylate was metabolized through three routes: glyoxylate carboligase pathway, malate synthase pathway, and anaplerotic ethylmalonyl–CoA pathway. Genes related to quorum sensing and transporters were significantly upregulated during the early stages of degradation (T0, T24) prior to dioxane depletion, while the expression of genes encoding two-component systems was significantly increased at late degradation stages (T48) when total organic carbon in the culture was exhausted. This study is the first to report the participation of genes encoding glyoxalase, as well as methylotrophic genes xoxF and mox, in dioxane metabolism. The present study reveals multiple genetic and transcriptional strategies used by YN2 to rapidly increase biomass during growth on dioxane, achieve high degradation efficiency and tolerance, and adapt to dioxane exposure quickly, which provides useful information regarding the molecular basis for efficient dioxane biodegradation.


2021 ◽  
Author(s):  
Chuhan Dai ◽  
Hao Wu ◽  
Xuejun Wang ◽  
Kankan Zhao ◽  
Zhenmei Lv

Abstract Background: 1,4-dioxane is an emerging wastewater contaminant with probable human carcinogenicity. Our current understanding of microbial interactions during 1,4-dioxane biodegradation process in mix cultures is limited. Here, we applied metagenomic, metatranscriptomic and co-occurrence network analyses to unraveling the microbial cooperation between degrader and non-degraders in an efficient 1,4-dioxane-degrading microbial community CH1.Results: The 1,4-dioxane degrading bacterium, Ancylobacter polymorphus ZM13, was isolated from CH1 and proved to be the key degrader because of the high relative abundance, highly expressed toluene monooxygenase genes tmoABCDEF and high betweenness centrality of networks. The strain ZM13 cooperated obviously with 6 bacterial genera in the network, among which Xanthobacter and Mesorhizobium were proved to be involved in the intermediate metabolism with responsible genes encoding alcohol dehydrogenase (adh), aldehyde dehydrogenase (aldh), glycolate oxidase (glcDEF), glyoxylate carboligase (gcl), malate synthase (glcB) and 2-isopropylmalate synthase (leuA) upregulated. Also, 1,4-dioxane facilitated the shift of biodiversity and function of CH1, and those cooperators of CH1 cooperated with ZM13 in the way of providing amino acids or fatty acids and relieving environmental stresses to promote biodegradation.Conclusions: This study revealed the biodiversity, community structure, microbial functions and interactions in a microbial community CH1 during the efficient 1,4-dioxane degradation and proved the degrader Ancylobacter polymorphus ZM13 that isolated from CH1 was the key degrading bacterium. These results provide new insights into our understanding of how the key degrading bacterium interacted with cooperators in a 1,4-dioxane-degrading community, and has important implications for predicting microbial cooperation and constructing highly efficient synthetic 1,4-dioxane-degrading communities.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 807
Author(s):  
Wenshun Hu ◽  
Baiyu Wang ◽  
Muhammad Moaaz Ali ◽  
Xiuping Chen ◽  
Jisen Zhang ◽  
...  

Amino acids are important component of fruit nutrition and quality. In this study, three longan cultivars, including non-aroma types ‘Shixia’ (SX), ‘Lidongben’ (LDB), and strong aroma type ‘Xiangcui’ (XC), were selected to analyze free amino acids (FAAs) variations at six distinct growth stages (S1–S6). The genome-wide identification and expression analysis of genes related to the branched-chain amino acids (BCAA) synthesis pathway were carried out. Results showed that 36 FAAs were identified, and the total FAAs content ranged from 2601.0 to 9073.5 mg/kg, which increased drastically with fruit development until ripening. L-glutamic acid (Glu), L-alanine (Ala), L-arginine (Arg), γ-Aminobutyric acid (GABA), L-aspartic acid (Asp), L-leucine (Leu), hydroxyl-proline (Hypro), and L-serine (Ser) were the predominant FAAs (1619.9–7213.9 mg/kg) in pulp, accounting for 62.28–92.05% of the total amino acids. During the period of rapid fruit expansion (S2–S4), the aroma of XC changed from light to strong, and the contents of L-alanine (Ala) and L-leucine (Leu) were significantly higher than those of SX and LDB. Furthermore, a total of two 2-isopropyl malate synthase (IPMS), two 3-isopropyl malate dehydrogenase (IPMD), and 16 BCAA transferase (BCAT) genes were identified. The expression levels of DilBCAT1, -6, and -9 genes in XC were significantly higher than those in SX and LDB, while DilBCAT16 in XC was lower. The content of Leu was negatively correlated with the expression of DilBCAT1, -6, and -9 in three varieties, but positively correlated with DilBCAT16, indicating that these four genes may be responsible for the different synthesis and degradation of Leu among cultivars.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1326
Author(s):  
Hulya Turk

This research aimed to investigate the effects of progesterone, a mammalian steroid sex hormone, on the mitochondrial respiration in germinating maize seeds. For this purpose, maize seeds were divided into four different groups (control, 10−6, 10−8, and 10−10 mol·L−1 progesterone) and were grown in a germination cabinet in the dark at 24.5 ± 0.5 °C for 4 d. The changes in gene expression levels of citrate synthase (CS), cytochrome oxidase (COX19), pyruvate dehydrogenase (Pdh1), and ATP synthase (ATP6), which is involved in mitochondrial respiration, were studied in root and cotyledon tissues. Significant increases were recorded in the gene expression levels of all studied enzymes. In addition, progesterone applications stimulated activities of malate synthase (MS), isocitrate lyase (ICL), and alpha-amylase, which are important enzymes of the germination step. The changes in gene expression levels of mas1 and icl1 were found parallel to the rise in these enzymes’ activities. It was determined similar increases in root and coleoptile lengths and total soluble protein and total carbohydrate contents. The most remarkable changes were detected in 10−8 mol·L−1 progesterone-treated seedlings. These results clearly indicate that progesterone stimulates mitochondrial respiration by inducing biochemical and molecular parameters and thus accelerates seed germination thanks to the activation of other pathways related to mitochondrial respiration.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Claudia Durall ◽  
Kateryna Kukil ◽  
Jeffrey A. Hawkes ◽  
Alessia Albergati ◽  
Peter Lindblad ◽  
...  

Abstract Background Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. Results We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. Conclusions Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 321
Author(s):  
Yaping Ma ◽  
Mura Jyostna Devi ◽  
Vangimalla R. Reddy ◽  
Lihua Song ◽  
Handong Gao ◽  
...  

The composition and content of sugar play a pivotal role in goji berry (Lycium barbarum L.) fruits, determining fruit quality. Long-term exposure of goji berry to elevated CO2 (eCO2) was frequently demonstrated to reduce sugar content and secondary metabolites. In order to understand the regulatory mechanisms and improve the quality of fruit in the changing climate, it is essential to characterize sugar metabolism genes that respond to eCO2. The objectives of this study were to clone full-length cDNA of three sugar metabolism genes—LBGAE (Lycium barbarum UDP-glucuronate 4-epimerase), LBGALA (Lycium barbarum alpha-galactosidase), and LBMS (Lycium barbarum malate synthase)—that were previously identified responding to eCO2, and to analyze sequence characteristics and expression regulation patterns. Sugar metabolism enzymes regulated by these genes were also estimated along with various carbohydrates from goji berry fruits grown under ambient (400 μmol mol−1) and elevated (700 μmol mol−1) CO2 for 90 and 120 days. Homology-based sequence analysis revealed that the protein-contained functional domains are similar to sugar transport regulation and had a high sequence homology with other Solanaceae species. The sucrose metabolism-related enzyme’s activity varied significantly from ambient to eCO2 in 90-day and 120-day samples along with sugars. This study provides fundamental information on sugar metabolism genes to eCO2 in goji berry to enhance fruit quality to climate change.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hailong Chen ◽  
Nianqing Zhu ◽  
Yan Wang ◽  
Xinxin Gao ◽  
Yuhe Song ◽  
...  

AbstractReprogramming glycolysis for directing glycolytic metabolites to a specific metabolic pathway is expected to be useful for increasing microbial production of certain metabolites, such as amino acids, lipids or considerable secondary metabolites. In this report, a strategy of increasing glycolysis by altering the metabolism of inositol pyrophosphates (IPs) for improving the production of S-adenosyl-l-methionine (SAM) for diverse pharmaceutical applications in yeast is presented. The genes associated with the metabolism of IPs, arg82, ipk1 and kcs1, were deleted, respectively, in the yeast strain Saccharomyces cerevisiae CGMCC 2842. It was observed that the deletions of kcs1 and arg82 increased SAM by 83.3 % and 31.8 %, respectively, compared to that of the control. In addition to the improved transcription levels of various glycolytic genes and activities of the relative enzymes, the levels of glycolytic intermediates and ATP were also enhanced. To further confirm the feasibility, the kcs1 was deleted in the high SAM-producing strain Ymls1ΔGAPmK which was deleted malate synthase gene mls1 and co-expressed the Acetyl-CoA synthase gene acs2 and the SAM synthase gene metK1 from Leishmania infantum, to obtain the recombinant strain Ymls1Δkcs1ΔGAPmK. The level of SAM in Ymls1Δkcs1ΔGAPmK reached 2.89 g L−1 in a 250-mL flask and 8.86 g L−1 in a 10-L fermentation tank, increasing 30.2 % and 46.2 %, respectively, compared to those levels in Ymls1ΔGAPmK. The strategy of increasing glycolysis by deletion of kcs1 and arg82 improved SAM production in yeast.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Shu Yih Chew ◽  
Alistair J. P. Brown ◽  
Benjamin Yii Chung Lau ◽  
Yoke Kqueen Cheah ◽  
Kok Lian Ho ◽  
...  

Abstract Background Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C. glabrata within glucose deprivation condition during infection. Methods In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches. Results Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages. Conclusion Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.


2020 ◽  
Vol 21 (20) ◽  
pp. 7548
Author(s):  
Qifei Ren ◽  
Yunchao Zhou ◽  
Xinwei Zhou

Nitrogen (N) is an essential nutrient for plant growth and development. Plant species respond to N fluctuations and N sources, i.e., ammonium or nitrate, differently. Masson pine (Pinus massoniana Lamb.) is one of the pioneer plants in the southern forests of China. It shows better growth when grown in medium containing ammonium as compared to nitrate. In this study, we had grown masson pine seedlings in medium containing ammonium, nitrate, and a mixture of both, and performed comparative transcriptome and proteome analyses to observe the differential signatures. Our transcriptome and proteome resulted in the identification of 1593 and 71 differentially expressed genes and proteins, respectively. Overall, the masson pine roots had better performance when fed with a mixture of ammonium and nitrate. The transcriptomic and proteomics results combined with the root morphological responses suggest that when ammonium is supplied as a sole N-source to masson pine seedlings, the expression of ammonium transporters and other non-specific NH4+-channels increased, resulting in higher NH4+ concentrations. This stimulates lateral roots branching as evidenced from increased number of root tips. We discussed the root performance in association with ethylene responsive transcription factors, WRKYs, and MADS-box transcription factors. The differential analysis data suggest that the adaptability of roots to ammonium is possibly through the promotion of TCA cycle, owing to the higher expression of malate synthase and malate dehydrogenase. Masson pine seedlings managed the increased NH4+ influx by rerouting N resources to asparagine production. Additionally, flavonoid biosynthesis and flavone and flavonol biosynthesis pathways were differentially regulated in response to increased ammonium influx. Finally, changes in the glutathione s-transferase genes suggested the role of glutathione cycle in scavenging the possible stress induced by excess NH4+. These results demonstrate that masson pine shows increased growth when grown under ammonium by increased N assimilation. Furthermore, it can tolerate high NH4+ content by involving asparagine biosynthesis and glutathione cycle.


2020 ◽  
Author(s):  
Saleh Umair ◽  
Charlotte Bouchet ◽  
Nikola Palevich ◽  
Heather Simpson

Abstract A 1332 bp full length cDNA encoding Teladorsagia circumcincta isocitrate lyase (TciICL) and a 1575 bp full length cDNA encoding T. circumcincta malate synthase (TciMS) were cloned, expressed in Escherichia coli and the recombinant proteins purified. The predicted TciICL protein of 444 amino acids was present as a single band of about 52 kDa on SDS-PAGE and the recombinant TciMS of 525 amino acids formed a single band about 62 kDa. Multiple alignments of the combined bifunctional TciICL MS protein sequence with homologues from other nematodes showed that the greatest similarity (89-92%) to the homologues of Ancylostoma ceylanicum, Haemonchus contortus and Haemonchus placei and 71-87% similarity to the other nematode sequences. The 3-dimensional structures, binding and catalytic sites were determined for TciICL and TciMS and shown to be highly conserved. Substrate and metal ion binding sites were identified and were completely conserved in other homologues. TciICL was confirmed as a functional enzyme. At 30 °C, the optimum pH was pH 7.5, the Vmax was 275 ± 23 nmoles.min-1.mg-1 protein and the apparent Km for the substrate isocitrate was 0.7 ± 0.01μM (mean ± SEM, n = 3). Addition of 10 mM metal ions (except Mg2+) or 1 mM inhibitors reduced the recombinant TciICL activity by 60-90%. Antibodies in both serum and saliva from field-immune, but not nematode-naïve, sheep recognised recombinant TciICL in ELISA, supporting similar antigenicity to that of the native enzyme.


Sign in / Sign up

Export Citation Format

Share Document