ion binding sites
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 21)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kitty Hendriks ◽  
Carl Öster ◽  
Adam Lange

Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jing Qu ◽  
Sheng S. Yin ◽  
Han Wang

The metal ion binding of transmembrane proteins (TMPs) plays a fundamental role in biological processes, pharmaceutics, and medicine, but it is hard to extract enough TMP structures in experimental techniques to discover their binding mechanism comprehensively. To predict the metal ion binding sites for TMPs on a large scale, we present a simple and effective two-stage prediction method TMP-MIBS, to identify the corresponding binding residues using TMP sequences. At present, there is no specific research on the metal ion binding prediction of TMPs. Thereby, we compared our model with the published tools which do not distinguish TMPs from water-soluble proteins. The results in the independent verification dataset show that TMP-MIBS has superior performance. This paper explores the interaction mechanism between TMPs and metal ions, which is helpful to understand the structure and function of TMPs and is of great significance to further construct transport mechanisms and identify potential drug targets.


2021 ◽  
Author(s):  
Ravikumar Reddi ◽  
Kimberly Matulef ◽  
Erika A. Riederer ◽  
Matthew R. Whorton ◽  
Francis I. Valiyaveetil

AbstractC-type inactivation is a process by which ion flux through a voltage-gated K+ (Kv) channel is regulated at the selectivity filter. While prior studies have indicated that C-type inactivation involves structural changes at the selectivity filter, the nature of the changes have not been resolved. Here we report the crystal structure of the Kv1.2 channel in a C-type inactivated state. The structure shows that C-type inactivation involves changes in the selectivity filter that disrupt the outer two ion binding sites in the filter. The changes at the selectivity filter propagate to the extracellular mouth and the turret regions of the channel pore. The structural changes observed are consistent with the functional hallmarks of C-type inactivation. This study highlights the intricate interplay between K+ occupancy at the ion binding sites and the interactions of the selectivity filter in determining the balance between the conductive and the inactivated conformations of the filter.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4152
Author(s):  
Luigi Tavernini ◽  
Oscar Romero ◽  
Carla Aburto ◽  
Fernando López-Gallego ◽  
Andrés Illanes ◽  
...  

Hybrid bioinorganic biocatalysts have received much attention due to their simple synthesis, high efficiency, and structural features that favor enzyme activity and stability. The present work introduces a biomineralization strategy for the formation of hybrid nanocrystals from β-galactosidase. The effects of the immobilization conditions were studied, identifying the important effect of metal ions and pH on the immobilization yield and the recovered activity. For a deeper understanding of the biomineralization process, an in silico study was carried out to identify the ion binding sites at the different conditions. The selected β-galactosidase nanocrystals showed high specific activity (35,000 IU/g biocatalyst) and remarkable thermal stability with a half-life 11 times higher than the soluble enzyme. The nanobiocatalyst was successfully tested for the synthesis of galacto-oligosaccharides, achieving an outstanding performance, showing no signs of diffusional limitations. Thus, a new, simple, biocompatible and inexpensive nanobiocatalyst was produced with high enzyme recovery (82%), exhibiting high specific activity and high stability, with promising industrial applications.


2021 ◽  
Author(s):  
Susrut Akkineni ◽  
Cheng Zhu ◽  
Jiajun Chen ◽  
Miao Song ◽  
Samuel Hoff ◽  
...  

Abstract Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Inspired by a model of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide apatite mineralization, we investigated the impact of nanoribbon structure and chemistry on amorphous calcium phosphate (ACP) nucleation. Using amelogenin sub-segments including an amyloid-like domain, nanoribbon conformation and function were determined by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers by creating low-energy interfaces, while phosphorylation dramatically enhances kinetic factors associated with ion binding. Furthermore, the predicted distribution of hydrophilic residues in the amyloid domain matches the structure of the multi-ion clusters comprising ACP. These findings provide crucial insights into structure-function relationships underlying amelogenin biomineralization and a generalizable system for synthesizing hybrid materials for various applications.


2021 ◽  
Vol 118 (8) ◽  
pp. e2012843118
Author(s):  
Johann Biedermann ◽  
Sebastian Braunbeck ◽  
Andrew J. R. Plested ◽  
Han Sun

Fast excitatory synaptic transmission in the central nervous system relies on the AMPA-type glutamate receptor (AMPAR). This receptor incorporates a nonselective cation channel, which is opened by the binding of glutamate. Although the open pore structure has recently became available from cryo-electron microscopy (Cryo-EM), the molecular mechanisms governing cation permeability in AMPA receptors are not understood. Here, we combined microsecond molecular dynamic (MD) simulations on a putative open-state structure of GluA2 with electrophysiology on cloned channels to elucidate ion permeation mechanisms. Na+, K+, and Cs+ permeated at physiological rates, consistent with a structure that represents a true open state. A single major ion binding site for Na+ and K+ in the pore represents the simplest selectivity filter (SF) structure for any tetrameric cation channel of known structure. The minimal SF comprised only Q586 and Q587, and other residues on the cytoplasmic side formed a water-filled cavity with a cone shape that lacked major interactions with ions. We observed that Cl− readily enters the upper pore, explaining anion permeation in the RNA-edited (Q586R) form of GluA2. A permissive architecture of the SF accommodated different alkali metals in distinct solvation states to allow rapid, nonselective cation permeation and copermeation by water. Simulations suggested Cs+ uses two equally populated ion binding sites in the filter, and we confirmed with electrophysiology of GluA2 that Cs+ is slightly more permeant than Na+, consistent with serial binding sites preferentially driving selectivity.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaping Pan ◽  
Zhenning Ren ◽  
Shuai Gao ◽  
Jiemin Shen ◽  
Lie Wang ◽  
...  

Abstract Ferroportin is an iron exporter essential for releasing cellular iron into circulation. Ferroportin is inhibited by a peptide hormone, hepcidin. In humans, mutations in ferroportin lead to ferroportin diseases that are often associated with accumulation of iron in macrophages and symptoms of iron deficiency anemia. Here we present the structures of the ferroportin from the primate Philippine tarsier (TsFpn) in the presence and absence of hepcidin solved by cryo-electron microscopy. TsFpn is composed of two domains resembling a clamshell and the structure defines two metal ion binding sites, one in each domain. Both structures are in an outward-facing conformation, and hepcidin binds between the two domains and reaches one of the ion binding sites. Functional studies show that TsFpn is an electroneutral H+/Fe2+ antiporter so that transport of each Fe2+ is coupled to transport of two H+ in the opposite direction. Perturbing either of the ion binding sites compromises the coupled transport of H+ and Fe2+. These results establish the structural basis of metal ion binding, transport and inhibition in ferroportin and provide a blueprint for targeting ferroportin in pharmacological intervention of ferroportin diseases.


2020 ◽  
Author(s):  
Saleh Umair ◽  
Charlotte Bouchet ◽  
Nikola Palevich ◽  
Heather Simpson

Abstract A 1332 bp full length cDNA encoding Teladorsagia circumcincta isocitrate lyase (TciICL) and a 1575 bp full length cDNA encoding T. circumcincta malate synthase (TciMS) were cloned, expressed in Escherichia coli and the recombinant proteins purified. The predicted TciICL protein of 444 amino acids was present as a single band of about 52 kDa on SDS-PAGE and the recombinant TciMS of 525 amino acids formed a single band about 62 kDa. Multiple alignments of the combined bifunctional TciICL MS protein sequence with homologues from other nematodes showed that the greatest similarity (89-92%) to the homologues of Ancylostoma ceylanicum, Haemonchus contortus and Haemonchus placei and 71-87% similarity to the other nematode sequences. The 3-dimensional structures, binding and catalytic sites were determined for TciICL and TciMS and shown to be highly conserved. Substrate and metal ion binding sites were identified and were completely conserved in other homologues. TciICL was confirmed as a functional enzyme. At 30 °C, the optimum pH was pH 7.5, the Vmax was 275 ± 23 nmoles.min-1.mg-1 protein and the apparent Km for the substrate isocitrate was 0.7 ± 0.01μM (mean ± SEM, n = 3). Addition of 10 mM metal ions (except Mg2+) or 1 mM inhibitors reduced the recombinant TciICL activity by 60-90%. Antibodies in both serum and saliva from field-immune, but not nematode-naïve, sheep recognised recombinant TciICL in ELISA, supporting similar antigenicity to that of the native enzyme.


2020 ◽  
Vol 6 (44) ◽  
pp. eabc9174
Author(s):  
Marco Lolicato ◽  
Andrew M. Natale ◽  
Fayal Abderemane-Ali ◽  
David Crottès ◽  
Sara Capponi ◽  
...  

K2P potassium channels regulate cellular excitability using their selectivity filter (C-type) gate. C-type gating mechanisms, best characterized in homotetrameric potassium channels, remain controversial and are attributed to selectivity filter pinching, dilation, or subtle structural changes. The extent to which such mechanisms control C-type gating of innately heterodimeric K2Ps is unknown. Here, combining K2P2.1 (TREK-1) x-ray crystallography in different potassium concentrations, potassium anomalous scattering, molecular dynamics, and electrophysiology, we uncover unprecedented, asymmetric, potassium-dependent conformational changes that underlie K2P C-type gating. These asymmetric order-disorder transitions, enabled by the K2P heterodimeric architecture, encompass pinching and dilation, disrupt the S1 and S2 ion binding sites, require the uniquely long K2P SF2-M4 loop and conserved “M3 glutamate network,” and are suppressed by the K2P C-type gate activator ML335. These findings demonstrate that two distinct C-type gating mechanisms can operate in one channel and underscore the SF2-M4 loop as a target for K2P channel modulator development.


Sign in / Sign up

Export Citation Format

Share Document