parent star
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 2161 (1) ◽  
pp. 012037
Author(s):  
Abhijit Banerjee ◽  
Rina Bhattacharya

Abstract The very inquisition of the humanity always remains about its parent star of this planetary system. Scientists across the world are always egger to investigate the details of the phenomenon of the solar flares and coronal mass ejections (CMEs). There are some fundamental mysteries related to the solar coronal heating along with the acceleration of the solar wind and energetic particles. In this context we have discussed on the solar radio signal data obtained from the Parker Solar Probe (PSP) mission of National Aeronautics and Space Administration (NASA), USA in course of its journey towards the Sun and the very recent data of Solar and Heliospheric Observatory (SOHO) space probe of European Space Agency (ESA) and NASA. In this work the simultaneous and periodical analysis of the data from the SOHO and PSP will light into the delicate features of the near and far Earth observations on the solar coronal mass ejections related dynamics and that reveals some interesting facts in relation to the solar magnetic field.


2021 ◽  
Vol 502 (4) ◽  
pp. 5292-5301
Author(s):  
Euaggelos E Zotos ◽  
Konstantinos E Papadakis ◽  
S Wageh

ABSTRACT We consider a system in which both the parent star and the Earth-like exoplanet move on circular orbits. Using numerical methods, such as the orbit classification technique, we study all types of trajectories of possible exomoons around the exoplanet. In particular, we scan the phase space around the exoplanet and we distinguish between bounded, collisional, and escaping trajectories, considering both retrograde and prograde types of motion. In the case of bounded regular motion, we also use the grid method and a standard predictor-corrector procedure for revealing the corresponding network of symmetric periodic solutions, while we also compute their linear stability.


Author(s):  
G. N. Dryomova ◽  
◽  
V. V. Dryomov ◽  
A. V. Tutukov ◽  
◽  
...  

The lecture is devoted to the study of the role of gravitational scattering in the evolution of planetary systems. This mechanism explains the origin of the Oort cloud and free asteroids, comets, and planets (ACPs) from the parent star.


2021 ◽  
Vol 65 (1) ◽  
pp. 61-69
Author(s):  
I. B. Miroshnichenko ◽  
I. F. Shaikhislamov ◽  
A. G. Berezutskii ◽  
M. S. Rumenskikh ◽  
E. S. Vetrova
Keyword(s):  

2020 ◽  
Author(s):  
Ilai Guendelman ◽  
Yohai Kaspi

<p>The insolation a planet receives from its parent star is the main engine of the climate and depends on the planet's orbital configuration. Planets with non-zero obliquity and eccentricity experience seasonal insolation variations. As a result, the climate exhibits a seasonal cycle, with its strength depending on the orbital configuration and atmospheric characteristics. In this study, using an idealized general circulation model, we examine the climate response to changes in eccentricity for both zero and non-zero obliquity planets. In the zero obliquity case, a comparison between the seasonal response to changes in eccentricity and perpetual changes in the solar constant shows that the seasonal response strongly depends on the orbital period and radiative timescale. More specifically, using a simple energy balance model, we show the importance of the latitudinal structure of the radiative timescale in the climate response. We also show that the response strongly depends on the atmospheric moisture content. The combination of an eccentric orbit with non-zero obliquity is complex, as the insolation also depends on the perihelion position. Although the detailed response of the climate to variations in eccentricity, obliquity, and perihelion is involved, the circulation is constrained mainly by the thermal Rossby number and the maximum temperature latitude. Finally, we discuss the importance of different planetary parameters that affect the climate response to orbital configuration variations.</p>


2020 ◽  
Vol 496 (1) ◽  
pp. 612-619
Author(s):  
Ahlam Hegazi ◽  
Ealeal Bear ◽  
Noam Soker

ABSTRACT We use the stellar evolution code MESA–binary and follow the evolution of three exoplanets and two brown dwarfs (BDs) to determine their potential role in the future evolution of their parent star on the red giant branch (RGB) and on the asymptotic giant branch (AGB). We limit this study to exoplanets and BDs with orbits that have semimajor axis of $1 {~\rm au}\lesssim a_0 \lesssim 20 {~\rm au}$, a high eccentricity, $e_0 \gtrsim 0.25$, and having a parent star of mass M*,0 ≥ 1 M⊙. We find that the star HIP 75 458 will engulf its planet HIP 75 458b during its RGB phase. The planet will remove the envelope and terminate the RGB evolution, leaving a bare helium core of mass 0.4 M⊙ that will evolve to form a helium white dwarf. Only in one system out of five, the planet beta Pic c will enter the envelope of its parent star during the AGB phase. For that to occur, we have to reduce the wind mass-loss rate by a factor of about four from its commonly used value. This strengthens an early conclusion, which was based on exoplanets with circular orbits, which states that to have a non-negligible fraction of AGB stars that engulf planets we should consider lower wind mass-loss rates of isolated AGB stars (before they are spun-up by a companion). Such an engulfed planet might lead to the shaping of the AGB mass-loss geometry to form an elliptical planetary nebula.


2020 ◽  
Vol 637 ◽  
pp. A93
Author(s):  
E. González-Álvarez ◽  
M. R. Zapatero Osorio ◽  
J. A. Caballero ◽  
J. Sanz-Forcada ◽  
V. J. S. Béjar ◽  
...  

Aims. We report on radial velocity time series for two M0.0 V stars, GJ 338 B and GJ 338 A, using the CARMENES spectrograph, complemented by ground-telescope photometry from Las Cumbres and Sierra Nevada observatories. We aim to explore the presence of small planets in tight orbits using the spectroscopic radial velocity technique. Methods. We obtained 159 and 70 radial velocity measurements of GJ 338 B and A, respectively, with the CARMENES visible channel between 2016 January and 2018 October. We also compiled additional relative radial velocity measurements from the literature and a collection of astrometric data that cover 200 a of observations to solve for the binary orbit. Results. We found dynamical masses of 0.64 ± 0.07 M⊙ for GJ 338 B and 0.69 ± 0.07 M⊙ for GJ 338 A. The CARMENES radial velocity periodograms show significant peaks at 16.61 ± 0.04 d (GJ 338 B) and 16.3−1.3+3.5 d (GJ 338 A), which have counterparts at the same frequencies in CARMENES activity indicators and photometric light curves. We attribute these to stellar rotation. GJ 338 B shows two additional, significant signals at 8.27 ± 0.01 and 24.45 ± 0.02 d, with no obvious counterparts in the stellar activity indices. The former is likely the first harmonic of the star’s rotation, while we ascribe the latter to the existence of a super-Earth planet with a minimum mass of 10.27−1.38+1.47 M⊕ orbiting GJ 338 B. We have not detected signals of likely planetary origin around GJ 338 A. Conclusions. GJ 338 Bb lies inside the inner boundary of the habitable zone around its parent star. It is one of the least massive planets ever found around any member of stellar binaries. The masses, spectral types, brightnesses, and even the rotational periods are very similar for both stars, which are likely coeval and formed from the same molecular cloud, yet they differ in the architecture of their planetary systems.


2020 ◽  
Vol 637 ◽  
pp. A14
Author(s):  
Euaggelos E. Zotos ◽  
Dimitri Veras

The size distribution and orbital architecture of dust, grains, boulders, asteroids, and major planets during the giant branch phases of evolution dictate the preponderance and observability of the eventual debris, which have been found to surround white dwarfs and pollute their atmospheres with metals. Here, we utilize the photogravitational planar restricted three-body problem in one-planet giant branch systems in order to characterize the orbits of grains as the parent star luminosity and mass undergo drastic changes. We perform a detailed dynamical analysis of the character of grain orbits (collisional, escape, or bounded) as a function of location and energy throughout giant branch evolution. We find that for stars with main-sequence masses of 2.0 M⊙, giant branch evolution, combined with the presence of a planet, ubiquitously triggers escape in grains smaller than about 1 mm, while leaving grains larger than about 5 cm bound to the star. This result is applicable for systems with either a terrestrial or giant planet, is largely independent of the location of the planet, and helps establish a radiative size threshold for escape of small particles in giant branch planetary systems.


2020 ◽  
Vol 635 ◽  
pp. L14 ◽  
Author(s):  
Pierre Kervella ◽  
Frédéric Arenou ◽  
Jean Schneider

We analyze the orbital parameters of the recently discovered exoplanet candidate Proxima c using a combination of its spectroscopic orbital parameters and Gaia DR2 astrometric proper motion anomaly. We obtain an orbital inclination of i = 152 ± 14 deg, corresponding to a planet mass of mc = 12−5+12 M⊕, comparable to Uranus and Neptune. While the derived orbital parameters are too uncertain to accurately predict the position of the planet for a given epoch, we present a map of its probability of presence relative to its parent star in the coming years.


2020 ◽  
Vol 633 ◽  
pp. A30 ◽  
Author(s):  
L. Mancini ◽  
P. Sarkis ◽  
Th. Henning ◽  
G. Á. Bakos ◽  
D. Bayliss ◽  
...  

Context. The transiting exoplanetary system WASP-174 was reported to be composed by a main-sequence F star (V = 11.8 mag) and a giant planet, WASP-174b (orbital period Porb = 4.23 days). However only an upper limit was placed on the planet mass (<1.3 MJup), and a highly uncertain planetary radius (0.7−1.7 RJup) was determined. Aims. We aim to better characterise both the star and the planet and precisely measure their orbital and physical parameters. Methods. In order to constrain the mass of the planet, we obtained new measurements of the radial velocity of the star and joined them with those from the discovery paper. Photometric data from the HATSouth survey and new multi-band, high-quality (precision reached up to 0.37 mmag) photometric follow-up observations of transit events were acquired and analysed for getting accurate photometric parameters. We fit the model to all the observations, including data from the TESS space telescope, in two different modes: incorporating the stellar isochrones into the fit, and using an empirical method to get the stellar parameters. The two modes resulted to be consistent with each other to within 2σ. Results. We confirm the grazing nature of the WASP-174b transits with a confidence level greater than 5σ, which is also corroborated by simultaneously observing the transit through four optical bands and noting how the transit depth changes due to the limb-darkening effect. We estimate that ≈76% of the disk of the planet actually eclipses the parent star at mid-transit of its transit events. We find that WASP-174b is a highly-inflated hot giant planet with a mass of Mp = 0.330 ± 0.091 MJup and a radius of Rp = 1.435 ± 0.050 RJup, and is therefore a good target for transmission-spectroscopy observations. With a density of ρp = 0.135 ± 0.042 g cm−3, it is amongst the lowest-density planets ever discovered with precisely measured mass and radius.


Sign in / Sign up

Export Citation Format

Share Document