scholarly journals Atmospheric dynamics on terrestrial planets with eccentric orbits

2020 ◽  
Author(s):  
Ilai Guendelman ◽  
Yohai Kaspi

<p>The insolation a planet receives from its parent star is the main engine of the climate and depends on the planet's orbital configuration. Planets with non-zero obliquity and eccentricity experience seasonal insolation variations. As a result, the climate exhibits a seasonal cycle, with its strength depending on the orbital configuration and atmospheric characteristics. In this study, using an idealized general circulation model, we examine the climate response to changes in eccentricity for both zero and non-zero obliquity planets. In the zero obliquity case, a comparison between the seasonal response to changes in eccentricity and perpetual changes in the solar constant shows that the seasonal response strongly depends on the orbital period and radiative timescale. More specifically, using a simple energy balance model, we show the importance of the latitudinal structure of the radiative timescale in the climate response. We also show that the response strongly depends on the atmospheric moisture content. The combination of an eccentric orbit with non-zero obliquity is complex, as the insolation also depends on the perihelion position. Although the detailed response of the climate to variations in eccentricity, obliquity, and perihelion is involved, the circulation is constrained mainly by the thermal Rossby number and the maximum temperature latitude. Finally, we discuss the importance of different planetary parameters that affect the climate response to orbital configuration variations.</p>

2018 ◽  
Vol 22 (10) ◽  
pp. 1-22 ◽  
Author(s):  
Andrew R. Bock ◽  
Lauren E. Hay ◽  
Gregory J. McCabe ◽  
Steven L. Markstrom ◽  
R. Dwight Atkinson

Abstract The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.


2016 ◽  
Vol 7 (4) ◽  
pp. 683-707
Author(s):  
D. A. Sachindra ◽  
F. Huang ◽  
A. Barton ◽  
B. J. C. Perera

Using a key station approach, statistical downscaling of monthly general circulation model outputs to monthly precipitation, evaporation, minimum temperature and maximum temperature at 17 observation stations located in Victoria, Australia was performed. Using the observations of each predictand, over the period 1950–2010, correlations among all stations were computed. For each predictand, the station which showed the highest number of correlations above 0.80 with other stations was selected as the first key station. The stations that were highly correlated with that key station were considered as the member stations of the first cluster. By employing this same procedure on the remaining stations, the next key station was found. This procedure was performed until all stations were segregated into clusters. Thereafter, using the observations of each predictand, regression equations (inter-station regression relationships) were developed between the key stations and the member stations for each calendar month. The downscaling models at the key stations were developed using reanalysis data as inputs to them. The outputs of HadCM3 pertaining to A2 emission scenario were introduced to these downscaling models to produce projections of the predictands over the period 2000–2099. Then the outputs of these downscaling models were introduced to the inter-station regression relationships to produce projections of predictands at all member stations.


2009 ◽  
Vol 22 (20) ◽  
pp. 5421-5432 ◽  
Author(s):  
Duncan Ackerley ◽  
Eleanor J. Highwood ◽  
David J. Frame ◽  
Ben B. B. Booth

Abstract A large ensemble of general circulation model (GCM) integrations coupled to a fully interactive sulfur cycle scheme were run on the climateprediction.net platform to investigate the uncertainty in the climate response to sulfate aerosol and carbon dioxide (CO2) forcing. The sulfate burden within the model (and the atmosphere) depends on the balance between formation processes and deposition (wet and dry). The wet removal processes for sulfate aerosol are much faster than dry removal and so any changes in atmospheric circulation, cloud cover, and precipitation will feed back on the sulfate burden. When CO2 is doubled in the Hadley Centre Slab Ocean Model (HadSM3), global mean precipitation increased by 5%; however, the global mean sulfate burden increased by 10%. Despite the global mean increase in precipitation, there were large areas of the model showing decreases in precipitation (and cloud cover) in the Northern Hemisphere during June–August, which reduced wet deposition and allowed the sulfate burden to increase. Further experiments were also undertaken with and without doubling CO2 while including a future anthropogenic sulfur emissions scenario. Doubling CO2 further enhanced the increases in sulfate burden associated with increased anthropogenic sulfur emissions as observed in the doubled CO2-only experiment. The implications are that the climate response to doubling CO2 can influence the amount of sulfate within the atmosphere and, despite increases in global mean precipitation, may act to increase it.


2016 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract. Insolation changes during the Eemian (the last interglacial period, 129–116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8±4 K in northwestern Greenland based on water stable isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and pre-industrial oceanic conditions and vice versa, are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes. Surface mass balance calculations with an energy balance model indicate potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction.


2021 ◽  
Vol 14 (5) ◽  
pp. 2843-2866
Author(s):  
Elisa Ziegler ◽  
Kira Rehfeld

Abstract. Modeling the long-term transient evolution of climate remains a technical and scientific challenge. However, understanding and improving modeling of the long-term behavior of the climate system increases confidence in projected changes in the mid- to long-term future. Energy balance models (EBMs) provide simplified and computationally efficient descriptions of long timescales and allow large ensemble runs by parameterizing energy fluxes. In this way, they can be used to pinpoint periods and phenomena of interest. Here, we present TransEBM, an extended version of the two-dimensional energy balance model by Zhuang et al. (2017a). Transient CO2, solar insolation, orbital configuration, fixed ice coverage, and land–sea distribution are implemented as effective radiative forcings at the land surface. We show that the model is most sensitive to changes in CO2 and ice distribution, but the obliquity and land–sea mask have significant influence on modeled temperatures as well. We tune TransEBM to reproduce the 1960–1989 CE global mean temperature and the Equator-to-pole and seasonal temperature gradients of ERA-20CM reanalysis (Hersbach et al., 2015). The resulting latitudinal and seasonal temperature distributions agree well with reanalysis and the general circulation model (GCM) HadCM3 for a simulation of the past millennium (Bühler et al., 2020). TransEBM does not represent the internal variability of the ocean–atmosphere system, but non-deterministic elements and nonlinearity can be introduced through model restarts and randomized forcing. As the model facilitates long transient simulations, we envisage its use in exploratory studies of stochastic forcing and perturbed parameterizations, thus complementing studies with comprehensive GCMs.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1704
Author(s):  
William Battaglin ◽  
Lauren Hay ◽  
David Lawrence ◽  
Greg McCabe ◽  
Parker Norton

The National Park Service (NPS) manages hundreds of parks in the United States, and many contain important aquatic ecosystems and/or threatened and endangered aquatic species vulnerable to hydro-climatic change. More effective management of park resources under future hydro-climatic uncertainty requires information on both baseline conditions and the range of projected future conditions. A monthly water balance model was used to assess baseline (1981–1999) conditions and a range of projected future hydro-climatic conditions in 374 NPS parks. General circulation model outputs representing 214 future climate simulations were used to drive the model. Projected future changes in air temperature (T), precipitation (p), and runoff (R) are expressed as departures from historical baselines. Climate simulations indicate increasing T by 2030 for all parks with 50th percentile simulations projecting increases of 1.67 °C or more in 50% of parks. Departures in 2030 p indicate a mix of mostly increases and some decreases, with 50th percentile simulations projecting increases in p in more than 70% of parks. Departures in R for 2030 are mostly decreases, with the 50th percentile simulations projecting decreases in R in more than 50% of parks in all seasons except winter. Hence, in many NPS parks, R is projected to decrease even when p is projected to increase because of increasing T in all parks. Projected changes in future hydro-climatic conditions can also be assessed for individual parks, and Rocky Mountain National Park and Congaree National Park are used as examples.


2003 ◽  
Vol 3 (4) ◽  
pp. 1177-1189 ◽  
Author(s):  
E.-J. Highwood ◽  
D. S. Stevenson

Abstract. The long 1783-1784 eruption of Laki in southern Iceland, was one of the first eruptions to have been linked to an observed climate anomaly, having been held responsible for cold temperatures over much of the Northern Hemisphere in the period 1783-1785. Results from the first climate model simulation of the impact of a similar eruption to that of 1783-1784 are presented. Using sulphate aerosol fields produced in a companion chemical transport model simulation by Stevenson et al. (2003), the radiative forcing and climate response due to the aerosol are calculated here using the Reading Intermediate General Circulation Model (IGCM). The peak Northern Hemisphere mean direct radiative forcing is -5.5 Wm-2 in August 1783. The radiative forcing dies away quickly as the emissions from the volcano decrease; however, a small forcing remains over the Mediterranean until March 1784. There is little forcing in the Southern Hemisphere. There is shown to be an uncertainty of at least 50% in the direct radiative forcing due to assumptions concerning relative humidity and the sophistication of the radiative transfer code used. The indirect effects of the Laki aerosol are potentially large but essentially unquantifiable at the present time. In the IGCM at least, the aerosol from the eruption produces a climate response that is spatially very variable. The Northern Hemisphere mean temperature anomaly averaged over the whole of the calendar year containing most of the eruption is -0.21 K, statistically significant at the 95% level and in reasonable agreement with the available observations of the temperature during 1783.


2020 ◽  
Author(s):  
Frederic Fluteau ◽  
Delphine Tardif ◽  
Guillaume Le Hir ◽  
Yannick Donnadieu ◽  
Pierre Sepulchre ◽  
...  

<p>The Middle Eocene represents the last ice-free period of the Cenozoic. Vegetation proxy data (wood, leaves, palynomorphs) discovered in the Antarctica peninsula and neighbouring islands or hosted in sedimentary sequences deposited on the continental margin reveal the presence of paratropical rain forests which thrived along the Antarctica coast during the Early Eocene. During the Middle and Late Eocene these flora have been progressively replaced by temperate <em>Nothofagus</em>-dominated rainforests (Contreras et al., 2013). Jacques et al. (2012) proposed, using a physiognomic approach (CLAMP), that a warm temperate and wet climate (with a marked summer rainy season) prevails until the middle Eocene (43±2 Ma) on the tip of the Antarctica Peninsula.</p><p>            To better constrain the climate in Antarctica and understand processes governing the polar climate during the Middle Eocene, we performed a set of experiments using the IPCC-like Earth System Model (IPSL-CM5A2-VLR) forced with a Middle Eocene (~40 Ma) paleogeography reconstruction and a 4 times pre-industrial atmospheric CO<sub>2</sub> level (1120ppm). To highlight the importance of the seasonality, we launched 6 orbital configurations exploring end-members situations. To complete the procedure, simulated sea surface temperatures and sea ice extents were then employed as boundary conditions to force the Atmospheric General circulation model LMDz6 (run at higher spatial resolution) coupled with a soil and vegetation model ORCHIDEE to simulate the corresponding vegetation over Antarctica. The 6 end-members Earth's orbital configuration allows exploring the full climatic spectrum which would have been recorded by proxy data. Simulated changes in atmospheric circulation will be discussed and the simulated climate and vegetation will be confronted to paleoclimatic indicators and vegetation data.</p>


2014 ◽  
Vol 11 (24) ◽  
pp. 7291-7304 ◽  
Author(s):  
L. Kwiatkowski ◽  
A. Yool ◽  
J. I. Allen ◽  
T. R. Anderson ◽  
R. Barciela ◽  
...  

Abstract. Ocean biogeochemistry (OBGC) models span a wide variety of complexities, including highly simplified nutrient-restoring schemes, nutrient–phytoplankton–zooplankton–detritus (NPZD) models that crudely represent the marine biota, models that represent a broader trophic structure by grouping organisms as plankton functional types (PFTs) based on their biogeochemical role (dynamic green ocean models) and ecosystem models that group organisms by ecological function and trait. OBGC models are now integral components of Earth system models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here we present an intercomparison of six OBGC models that were candidates for implementation within the next UK Earth system model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the ocean general circulation model Nucleus for European Modelling of the Ocean (NEMO) and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform all other models across all metrics. Nonetheless, the simpler models are broadly closer to observations across a number of fields and thus offer a high-efficiency option for ESMs that prioritise high-resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low-resolution climate dynamics and high-complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry–climate interactions.


Sign in / Sign up

Export Citation Format

Share Document