Osteogenic cells are strongly influenced in their behaviour by the surface properties of orthopaedic implant materials. Mesenchymal stem and progenitor cells (MSPCs) migrate to the bone–implant interface, adhere to the material surface, proliferate and subsequently differentiate into osteoblasts, which are responsible for the formation of the bone matrix. Five surface topographies on titanium aluminium vanadium (TiAl6V4) were engineered to investigate biocompatibility and adhesion potential of human osteoblasts and the changes in osteogenic differentiation of MSPCs. Elemental analysis of TiAl6V4 discs coated with titanium nitride (TiN), silver (Ag), roughened surface, and pure titanium (cpTi) surface was analysed using energy-dispersive X-ray spectroscopy and scanning electron microscopy. In vitro cell viability, cytotoxicity, adhesion behaviour, and osteogenic differentiation potential were measured via CellTiter-Glo, CytoTox, ELISA, Luminex® technology, and RT-PCR respectively. The Ag coating reduced the growth of osteoblasts, whereas the viability of MSPCs increased significantly. The roughened and the cpTi surface improved the viability of all cell types. The additive coatings of the TiAl6V4 alloy improved the adhesion of osteoblasts and MSPCs. With regard to the osteogenic differentiation potential, an enhanced effect has been demonstrated, especially in the case of roughened and cpTi coatings.