homogeneous convex
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
D. V. ALEKSEEVSKY ◽  
V. CORTÉS

AbstractThe paper is devoted to the generalization of the Vinberg theory of homogeneous convex cones. Such a cone is described as the set of “positive definite matrices” in the Vinberg commutative algebra ℋn of Hermitian T-matrices. These algebras are a generalization of Euclidean Jordan algebras and consist of n × n matrices A = (aij), where aii ∈ ℝ, the entry aij for i < j belongs to some Euclidean vector space (Vij ; 𝔤) and $$ {a}_{ji}={a}_{ij}^{\ast }=\mathfrak{g}\left({a}_{ij},\cdot \right)\in {V}_{ij}^{\ast } $$ a ji = a ij ∗ = g a ij ⋅ ∈ V ij ∗ belongs to the dual space $$ {V}_{ij}^{\ast }. $$ V ij ∗ . The multiplication of T-Hermitian matrices is defined by a system of “isometric” bilinear maps Vij × Vjk → Vij ; i < j < k, such that |aij ⋅ ajk| = |aij| ⋅ |aik|, alm ∈ Vlm. For n = 2, the Hermitian T-algebra ℋn= ℋ2 (V) is determined by a Euclidean vector space V and is isomorphic to a Euclidean Jordan algebra called the spin factor algebra and the associated homogeneous convex cone is the Lorentz cone of timelike future directed vectors in the Minkowski vector space ℝ1,1⊕ V . A special Vinberg Hermitian T-algebra is a rank 3 matrix algebra ℋ3(V; S) associated to a Clifford Cl(V )-module S together with an “admissible” Euclidean metric 𝔤S.We generalize the construction of rank 2 Vinberg algebras ℋ2(V ) and special Vinberg algebras ℋ3(V; S) to the pseudo-Euclidean case, when V is a pseudo-Euclidean vector space and S = S0 ⊕ S1 is a ℤ2-graded Clifford Cl(V )-module with an admissible pseudo-Euclidean metric. The associated cone 𝒱 is a homogeneous, but not convex cone in ℋm; m = 2; 3. We calculate the characteristic function of Koszul-Vinberg for this cone and write down the associated cubic polynomial. We extend Baez’ quantum-mechanical interpretation of the Vinberg cone 𝒱2 ⊂ ℋ2(V ) to the special rank 3 case.


Author(s):  
Jurandir Ceccon ◽  
Marcos Montenegro

Let (M, g) and (N, h) be compact Riemannian manifolds of dimensions m and n, respectively. For p-homogeneous convex functions f(s, t) on [0,∞) × [0, ∞), we study the validity and non-validity of the first-order optimal Sobolev inequality on H1, p(M × N) where and Kf = Kf (m, n, p) is the best constant of the homogeneous Sobolev inequality on D1, p (Rm+n), The proof of the non-validity relies on the knowledge of extremal functions associated with the Sobolev inequality above. In order to obtain such extremals we use mass transportation and convex analysis results. Since variational arguments do not work for general functions f, we investigate the validity in a uniform sense on f and argue with suitable approximations of f which are also essential in the non-validity. Homogeneous Sobolev inequalities on product manifolds are connected to elliptic problems involving a general class of operators.


Author(s):  
L. Baffico ◽  
C. Conca ◽  
M. Rajesh

In this article we study the asymptotic behaviour of the eigenvalues of a family of nonlinear monotone elliptic operators of the form Aε = −div(aε (x, ∇u)), which are sub-differentials of even, positively homogeneous convex functionals, under the assumption that the operators G-converge to an operator Ahom = −div(ahom(x, ∇u)). We show that any limit point λ of a sequence of eigenvalues λε is an eigenvalue of the limit operator Ahom, where λε is an eigenvalue corresponding to the operator Aε. We also show the convergence of the sequence of first eigenvalues to the corresponding first eigenvalue of the homogenized operator.


1998 ◽  
Vol 81 (1) ◽  
pp. 55-76 ◽  
Author(s):  
Osman Güler ◽  
Levent Tunçel

Sign in / Sign up

Export Citation Format

Share Document