Understanding and prediction of the dynamics of slender flexible cylinders in axial flow is of interest for the design and safe operation of heat exchangers and nuclear reactors, specifically that of heat exchanger tubes, nuclear fuel elements, control rods, and monitoring tubes. In such fluid-structure interaction problems, the fluid forces acting on the flexible structure play a vital role in defining its dynamics. Therefore, a precise calculation of the coefficients associated to these forces, such as the longitudinal and normal viscous force coefficients, and base drag coefficient in the equation of motion is imperative. The present work is aimed at (i) calculating these force coefficients for a cantilevered slender flexible cylinder, fitted with an ogival end-piece, in axial flow and (ii) conducting experiments on the same system. In the calculation of these force coefficients, the parameters of the experimental system are used, so that the theoretically predicted dynamics would be representative of the actual physical system. These calculated force coefficients are then incorporated in the linear and nonlinear equations of motion and the predicted dynamics are compared with those of the experiments. The comparison shows good agreement between the theoretical and experimental results.