ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels
Latest Publications


TOTAL DOCUMENTS

192
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By ASMEDC

9780791843499, 9780791838501

Author(s):  
Jing Liu ◽  
Yang Yang

Building systems as compactly as possible has been a major theme in modern science and engineering practices. However, such enthusiastic endeavor often encounters big troubles due to high cost and complexity of the process it involves. Part of the reasons comes from the methodology itself, the fabrication, designing and characterization procedure etc. Among various disciplines to making micro/nano object, those enabled from the thermal and hydrodynamic science plays a rather important role. In this article, we will illustrate a cryogenic way for realizing a group of different micro/nano devices which can be implemented as mechanical, hydraulic, electrical, or optical functional units. The basic principle of the method lies in the formation of ice crystals in small area, from which micro/nano aqueous objects or signals transmitting across them can be blocked, manipulated and analyzed. In this way, a series of micro/nano devices such as freeze tweezer, ice valve, freeze-thaw pump, electrical or optical signal switch and micro thermal analyzer etc. can be developed via a rather simple and low cost way. As examples, some latest advancement made in the authors’ lab will be reviewed. Their innovative applications in a wide variety of micro/nano engineering fields will be discussed. Further, to illustrate the low cost way to directly manufacture micro/nano objects, we will explain a bubble fabrication method whose basic principle lies in the chemical reaction occurring at the fluidic interfaces between two or more soap adjacent bubbles. A unique virtue of the bubble is that it can have a rather huge diameter however an extremely small membrane thickness, whose smallest size can even reach nano scale. Therefore, the administrated chemical reaction in the common interface of the contacting bubbles would lead to products with extremely small size. Particularly, all these results were achieved via a rather straightforward way. The bubble builds up a bridge between the macroscopic manipulation/observation and the fabrication in small world. Several typical micro structures as fabricated in the lab will be illustrated. As a flexible, easily controllable, and low cost method, the bubble fabrication can possibly be developed as a routine strategy for making micro/nano structures in the near future.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


Author(s):  
Juanfang Liu ◽  
Chao Liu ◽  
Qin Li

The flow properties and dynamical behavior of fluid in a nanochannel were investigated by nonequilibrium molecular dynamics simulation. First of all, the locale distribution of molecules in the channel is found to be strongly inhomogeneous compared to the bulk fluid. In the vicinity of the wall, portion of the fluid molecules are absorbed on the surface of wall due to the strong interaction of the atoms between the wall and liquid, so that the fluid density in the contact region would be much larger than one of the bulk fluid. But in the other region, the local density value approaches one of the bulk fluids with the increasing distance from the wall. This oscillatory behavior of density resulted in different motion behavior of molecules in the different region of nanochannel. The molecular behavior in the interfacial region is remarkably different from those of fluid atoms in the center of channel and wall atoms, which posses both the motion properties of bulk liquids and a solid atom. At the molecular level, macroscopic continuum hypothesis failed, that is, the results predicted by the Navier-Stoke equations deviate from the simulation data adopted by molecular dynamics simulation. In the paper, the velocity profiles for the channels with different width were plotted, which demonstrated that the time-averaged velocity profiles was not quadratic when the channel width was less than 10 molecular diameters. But on the other cases, the velocity profiles will agree well with the analytical solution based on the NS theory. The molecular dynamics simulation method can withdraw the important microscopical information from the simulation process, which benefit to analyze the flow mechanism at such length scale channel.


Author(s):  
Ralf Knauss ◽  
Lukas E. Wiesegger ◽  
Rolf Marr ◽  
Ju¨rgen J. Brandner

Arranging micro-structured equipment to plants whole production processes can be realized with maximum efficiency in tightest space. Unit operations are thereby represented as individual functional modules in shape of micro devices. In a multi unit operation plant a correspondingly large number of manipulable variables have to be coordinated. Due to the design of micro-scaled devices plants form sophisticated systems, while for a fully optimized control still no common satisfying solutions exist. A system of modular, discontinuous phase contacting, micro rectification consists of unit operations heating, cooling, mixing and separating. Heat exchangers, mixers and cyclones for phase separation can be arranged to a counter-current rectification system with maximum mass-transfer efficiency every unit. Operating an electrical heated evaporator for modular rectification purposes a strong coupling of mass flow with the vapor fraction and the outlet temperature can be observed [4]. Operating at a predefined state for mass flow, temperature and vapor fraction may only be possible with difficulties using traditional methods of linear control technology. For dynamic optimization of the multivariable micro-structured evaporator principle of Nonlinear Model Predictive Control (NMPC) was generically formulated in C++ and implemented to LABVIEW 7. Every discrete time step an objective function is generated from nonlinear process models in the form of grouped NARX-polynomials. Optimal sequences of control actions for plant operation are evolved. The resulting constrained cost function is non-convex making detection of relative local optimum a difficult task. This obstacle can be gone around using heuristic optimization algorithm in combination with traditional techniques. Based on experimental results it was demonstrated that NMPC keeps the coupled variables mass flow and temperature energy saving with minimal control activity in the entire two-phase region on their set-points.


Author(s):  
Cunlu Zhao ◽  
Chun Yang

Electroosmotic flow of power-law fluids in a slit channel is analyzed. The governing equations including the linearized Poisson–Boltzmann equation, the Cauchy momentum equation and the continuity equation are solved to seek analytical expressions for the shear stress, dynamic viscosity and velocity distributions. Specifically, exact solutions of the velocity distributions are explicitly found for several special values of the flow behavior index. Furthermore, with the implementation of an approximate scheme for the hyperbolic cosine function, approximate solutions of the velocity distributions are obtained. In addition, a mathematical expression for the average electroosmotic velocity is derived for large values of the dimensionless electrokinetic parameter, κH, in a fashion similar to the Smoluchowski equation. Hence, a generalized Smoluchowski velocity is introduced by taking into account contributions due to the finite thickness of the electric double layer and the flow behavior index of power-law fluids. Finally, calculations are performed to examine the effects of κH, flow behavior index, double layer thickness, and applied electric field on the shear stress, dynamic viscosity, velocity distribution, and average velocity/flow rate of the electroosmotic flow of power-law fluids.


Author(s):  
Ehsan Roohi ◽  
Masoud Darbandi ◽  
Vahid Mirjalili

The current research uses an unstructured direct simulation Monte Carlo (DSMC) method to numerically investigate supersonic and subsonic flow behavior in micro convergent–divergent nozzle over a wide range of rarefied regimes. The current unstructured DSMC solver has been suitably modified via using uniform distribution of particles, employing proper subcell geometry, and benefiting from an advanced molecular tracking algorithm. Using this solver, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number, on the flow field in micronozzles. We show that high viscous force manifesting in boundary layers prevents supersonic flow formation in the divergent section of nozzles as soon as the Knudsen number increases above a moderate magnitude. In order to accurately simulate subsonic flow at the nozzle outlet, it is necessary to add a buffer zone to the end of nozzle. If we apply the back pressure at the outlet, boundary layer separation is observed and a region of backward flow appears inside the boundary layer while the core region of inviscid flow experiences multiple shock-expansion waves. We also show that the wall boundary layer prevents forming shocks in the divergent part. Alternatively, Mach cores appear at the nozzle center followed by bow shocks and an expansion region.


Author(s):  
Arman Sadeghi ◽  
Abolhassan Asgarshamsi ◽  
Mohammad Hassan Saidi

Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously obtained velocity distribution, energy conservation equation subjected to relevant boundary conditions is numerically solved using fourth order Runge-Kutta method. The Nusselt number values are presented in graphical form as well as tabular form. It is realized that for the case A increasing aspect ratio results in increasing the Nusselt number, while the opposite is true for the case B. The effect of aspect ratio on Nusselt number is more notable at smaller values of Knudsen number, while its effect becomes slighter at large Knudsen numbers. Also increasing Knudsen number leads to smaller values of Nusselt number for the both cases.


Author(s):  
Alireza Dastan ◽  
Omid Abouali

In this paper pressure drop and particle deposition in a microchannel with a hydraulic diameter of 225 micrometer is investigated numerically. Several hundred micron length fibers caught at the entrance of the channels making a “fiber web” also is modeled in this research. Governing equations for the flow field are solved with an Eulerian approach while the equations of particle motion in the flow are solved by a Lagrangian approach. Assuming the symmetry in the domain, one channel and the corresponding plenum are studied in the computational domain. For studying the effects of fibers in the flow, two fiber webs with four and six solid fibers are studied. The increase of pressure drop in the microchannel because of the entrance fiber web is computed and discussed. Also deposition and collection of the particles with various diameters at the fiber webs are also presented.


Author(s):  
Jatuporn Kaew-On ◽  
Somchai Wongwises

The evaporation heat transfer coefficients and pressure drops of R-410A and R-134a flowing through a horizontal-aluminium rectangular multiport mini-channel having a hydraulic diameter of 3.48 mm are experimentally investigated. The test runs are done at refrigerant mass fluxes ranging between 200 and 400 kg/m2s. The heat fluxes are between 5 and 14.25 kW/m2, and refrigerant saturation temperatures are between 10 and 30 °C. The effects of the refrigerant vapour quality, mass flux, saturation temperature and imposed heat flux on the measured heat transfer coefficient and pressure drop are investigated. The experimental data show that in the same conditions, the heat transfer coefficients of R-410A are about 20–50% higher than those of R-134a, whereas the pressure drops of R-410A are around 50–100% lower than those of R-134a. The new correlations for the evaporation heat transfer coefficient and pressure drop of R-410A and R-134a in a multiport mini-channel are proposed for practical applications.


Author(s):  
Xiaopeng Qu ◽  
Huihe Qiu

The effect of acoustic field on the dynamics of micro thermal bubble is investigated in this paper. The micro thermal bubbles were generated by a micro heater which was fabricated by standard Micro-Electro-Mechanical-System (MEMS) technology and integrated into a mini chamber. The acoustic field formed in the mini chamber was generated by a piezoelectric plate which was adhered on the top side of the chamber’s wall. The dynamics and related heat transfer induced by the micro heater generated vapor bubble with and without the existing of acoustic field were characterized by a high speed photograph system and a micro temperature sensor. Through the experiments, it was found that in two different conditions, the temperature changing induced by the micro heater generated vapor bubble was significantly different. From the analysis of the high speed photograph results, the acoustic force induced micro thermal bubble movements, such as forcibly removing, collapsing and sweeping, were the main effects of acoustic enhanced boiling heat transfer. The experimental results and theoretical analysis were helpful for understanding of the mechanisms of acoustic enhanced boiling heat transfer and development of novel micro cooling devices.


Sign in / Sign up

Export Citation Format

Share Document