New Composite Material: PLLA and Tricalcium Phosphate for Orthopaedic Applications-In Vitro and In Vivo Studies (Part 1)

Author(s):  
Jean Charles Le Huec ◽  
Antonio Faundez ◽  
Stephane Aunoble ◽  
Rachid Sadikki ◽  
Julien Rigal
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fangchun Jin ◽  
Qixun Cai ◽  
Wei Wang ◽  
Xiaohui Fan ◽  
Xiao Lu ◽  
...  

β-Tricalcium phosphate (TCP) is a type of bioceramic material which is commonly used for hard tissue repair and famous of its remarkable biocompatibility and osteoconductivity with similar composition to natural bone. However, TCP lacks osteoindcutive properties. Stromal-derived factor 1α (SDF-1α) can promote bone regeneration with excellent osteoinduction effect. In this study, SDF-1α was loaded into TCP to investigate the in vitro effects of SDF-1α on the osteoinductive properties of TCP. In vitro studies showed that SDF-1α/TCP scaffold significantly stimulated the expression of osteopontin and osteocalcin. As to the in vivo studies, the rabbit bone defect model showed that SDF-1α stimulated more new bone formation. In conclusion, SDF-1α/TCP bioceramic scaffolds could further promote bone regeneration compared to pure TCP bioceramics.


2008 ◽  
Vol 47-50 ◽  
pp. 1395-1398
Author(s):  
Ya Liu ◽  
Min Wang

Totally biodegradable and osteoconductive composite material consisting of polyhydroxybutyrate (PHB) and β-tricalcium phosphate (β-TCP) was manufactured for bone tissue repair. The composite production process was optimized with the help of differential scanning calorimetry (DSC) analyses. Thermogravimetric analyses (TGA) indicated that intended compositions for TCP/PHB composite could be achieved through this manufacturing route. Scanning electron microscopic (SEM) examinations revealed that TCP/PHB composite containing up to 40 vol.% of β-TCP had satisfactory distribution of micron-sized TCP particles in the composite. The good-quality composite will be further investigated in in vitro and in vivo experiments.


2021 ◽  
Vol 1 (19) ◽  
pp. 31-32
Author(s):  
F.S. Senatov ◽  
N.V. Strukova ◽  
M.S. Krivozubov ◽  
M.S. Generalova ◽  
K.E. Nikitin ◽  
...  

A biomimetic composite material based on polylactide (PLA), polycaprolactone (PCL) and hydroxyapatite (HAP) with high biocompatibility and osteoconductive properties was developed. The structural and mechanical characteristics of the material were investigated and in vitro and in vivo studies were carried out.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document