A Subgraph Query Method Based on Adjacent Node Features on Large-Scale Label Graphs

Author(s):  
Xiaohuan Shan ◽  
Jingjiao Ma ◽  
Jianye Gao ◽  
Zixuan Xu ◽  
Baoyan Song
Information ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 61
Author(s):  
Xiaohuan Shan ◽  
Chunjie Jia ◽  
Linlin Ding ◽  
Xingyan Ding ◽  
Baoyan Song

A labeled graph is a special structure with node identification capability, which is often used in information networks, biological networks, and other fields. The subgraph query is widely used as an important means of graph data analysis. As the size of the labeled graph increases and changes dynamically, users tend to focus on the high-match results that are of interest to them, and they want to take advantage of the relationship and number of results to get the results of the query quickly. For this reason, we consider the individual needs of users and propose a dynamic Top-K interesting subgraph query. This method establishes a novel graph topology feature index (GTSF index) including a node topology feature index (NTF index) and an edge feature index (EF index), which can effectively prune and filter the invalid nodes and edges that do not meet the restricted condition. The multi-factor candidate set filtering strategy is proposed based on the GTSF index, which can be further pruned to obtain fewer candidate sets. Then, we propose a dynamic Top-K interesting subgraph query method based on the idea of the sliding window to realize the dynamic modification of the matching results of the subgraph in the dynamic evolution of the label graph, to ensure real-time and accurate results of the query. In addition, considering the factors, such as frequent Input/Output (I/O) and network communication overheads, the optimization mechanism of the graph changes and an incremental maintenance strategy for the index are proposed to reduce the huge cost of redundant operation and global updates. The experimental results show that the proposed method can effectively deal with a dynamic Top-K interesting subgraph query on a large-scale labeled graph, at the same time the optimization mechanism of graph changes and the incremental maintenance strategy of the index can effectively reduce the maintenance overheads.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 78471-78482
Author(s):  
Xiaohuan Shan ◽  
Guangxiang Wang ◽  
Linlin Ding ◽  
Baoyan Song ◽  
Yan Xu

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiaohuan Shan ◽  
Haihai Li ◽  
Chunjie Jia ◽  
Dong Li ◽  
Baoyan Song

Interesting subgraph query aims to find subgraphs that are isomorphic to the given query graph from a data graph and rank the subgraphs according to their interestingness scores. However, the existing subgraph query approaches are inefficient when dealing with large-scale labeled data graph. This is caused by the following problems: (i) the existing work mainly focuses on unweighted query graphs, while ignoring the impact of query constraints on query results. (ii) Excessive number of subgraph candidates or complex joins between nodes in the subgraph candidates reduce the query efficiency. To solve these problems, this paper proposes an intelligent solution. Firstly, an Isotype Structure Graph Compression (ISGC) strategy is proposed to compress similar nodes in a graph to reduce the size of the graph and avoid unnecessary matching. Then, an auxiliary data structure Supergraph Topology Feature Index (STFIndex) is designed to replace the storage of the original data graph and improve the efficiency of an online query. After that, a partition method based on Edge Label Step Value (ELSV) is proposed to partition the index logically. In addition, a novel Top-K interest subgraph query approach is proposed, which consists of the multidimensional filtering (MDF) strategy, upper bound value (UBV) (Size-c) matching, and the optimizational join (QJ) method to filter out as many false subgraph candidates as possible to achieve fast joins. We conduct experiments on real and synthetic datasets. Experimental results show that the average performance of our approach is 1.35 higher than that of the state-of-the-art approaches when the query graph is unweighted, and the average performance of our approach is 2.88 higher than that of the state-of-the-art approaches when the query graph is weighted.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


Sign in / Sign up

Export Citation Format

Share Document