Idempotent Fourier multipliers acting contractively on $$H^p$$ spaces
AbstractWe describe the idempotent Fourier multipliers that act contractively on $$H^p$$ H p spaces of the d-dimensional torus $$\mathbb {T}^d$$ T d for $$d\ge 1$$ d ≥ 1 and $$1\le p \le \infty $$ 1 ≤ p ≤ ∞ . When p is not an even integer, such multipliers are just restrictions of contractive idempotent multipliers on $$L^p$$ L p spaces, which in turn can be described by suitably combining results of Rudin and Andô. When $$p=2(n+1)$$ p = 2 ( n + 1 ) , with n a positive integer, contractivity depends in an interesting geometric way on n, d, and the dimension of the set of frequencies associated with the multiplier. Our results allow us to construct a linear operator that is densely defined on $$H^p(\mathbb {T}^\infty )$$ H p ( T ∞ ) for every $$1 \le p \le \infty $$ 1 ≤ p ≤ ∞ and that extends to a bounded operator if and only if $$p=2,4,\ldots ,2(n+1)$$ p = 2 , 4 , … , 2 ( n + 1 ) .