scholarly journals A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing

2019 ◽  
Vol 105 (11) ◽  
pp. 4599-4619 ◽  
Author(s):  
N. J. Wilkinson ◽  
M. A. A. Smith ◽  
R. W. Kay ◽  
R. A. Harris
2013 ◽  
Vol 562-565 ◽  
pp. 1417-1421 ◽  
Author(s):  
Bu Lei Xu ◽  
Yang Zhao ◽  
Ling Ke Yu ◽  
Bing Xu ◽  
Hao Er Zhang ◽  
...  

Radio Frequency Identification (RFID) tag is one of the Automatic Identification technology, its application has been involved in all aspects of daily life. A new micro manufacturing technology called Aerosol Jet® printing is described to fabricate the RFID tag in this paper. The fabrication method of Aerosol Jet printing RFID tag is that print the line using sliver ink as the seed first, and then electroplate copper to increase the line width and thickness to reduce the resistance, thus it would get the higher quality factor Q. The width of seed lines printed is 60 μm with the tip of 250 μm in diameter. The inductance value of RFID tag printed is in the range of 2.87 μH to 2.97 μH, it meets the required value of 2 μH to 6 μH.


2021 ◽  
Vol 48 ◽  
pp. 101264
Author(s):  
Haining Zhang ◽  
Joon Phil Choi ◽  
Seung Ki Moon ◽  
Teck Hui Ngo

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 220
Author(s):  
Mahmuda Akter Monne ◽  
Chandan Qumar Howlader ◽  
Bhagyashree Mishra ◽  
Maggie Yihong Chen

Polyvinyl Alcohol (PVA) is a promising polymer due to its high solubility with water, availability in low molecular weight, having short polymer chain, and cost-effectiveness in processing. Printed technology is gaining popularity to utilize processible solution materials at low/room temperature. This work demonstrates the synthesis of PVA solution for 2.5% w/w, 4.5% w/w, 6.5% w/w, 8.5% w/w and 10.5% w/w aqueous solution was formulated. Then the properties of the ink, such as viscosity, contact angle, surface tension, and printability by inkjet and aerosol jet printing, were investigated. The wettability of the ink was investigated on flexible (Kapton) and non-flexible (Silicon) substrates. Both were identified as suitable substrates for all concentrations of PVA. Additionally, we have shown aerosol jet printing (AJP) and inkjet printing (IJP) can produce multi-layer PVA structures. Finally, we have demonstrated the use of PVA as sacrificial material for micro-electro-mechanical-system (MEMS) device fabrication. The dielectric constant of printed PVA is 168 at 100 kHz, which shows an excellent candidate material for printed or traditional transistor fabrication.


2021 ◽  
pp. 102325
Author(s):  
D.R. Hines ◽  
Y. Gu ◽  
A.A. Martin ◽  
P. Li ◽  
J. Fleischer ◽  
...  

Author(s):  
Roozbeh (Ross) Salary ◽  
Jack P. Lombardi ◽  
Prahalad K. Rao ◽  
Mark D. Poliks

The goal of this research is online monitoring of functional electrical properties, e.g., resistance, of electronic devices made using aerosol jet printing (AJP) additive manufacturing (AM) process. In pursuit of this goal, the objective is to recover the cross-sectional profile of AJP-deposited electronic traces (called lines) through shape-from-shading (SfS) analysis of their online images. The aim is to use the SfS-derived cross-sectional profiles to predict the electrical resistance of the lines. An accurate characterization of the cross section is essential for monitoring the device resistance and other functional properties. For instance, as per Ohm’s law, the electrical resistance of a conductor is inversely proportional to its cross-sectional area (CSA). The central hypothesis is that the electrical resistance of an AJP-deposited line estimated online and in situ from its SfS-derived cross-sectional area is within 20% of its offline measurement. To test this hypothesis, silver nanoparticle lines were deposited using an Optomec AJ-300 printer at varying sheath gas flow rate (ShGFR) conditions. The four-point probes method, known as Kelvin sensing, was used to measure the resistance of the printed structures offline. Images of the lines were acquired online using a charge-coupled device (CCD) camera mounted coaxial to the deposition nozzle of the printer. To recover the cross-sectional profiles from the online images, three different SfS techniques were tested: Horn’s method, Pentland’s method, and Shah’s method. Optical profilometry was used to validate the SfS cross section estimates. Shah’s method was found to have the highest fidelity among the three SfS approaches tested. Line resistance was predicted as a function of ShGFR based on the SfS-estimates of line cross section using Shah’s method. The online SfS-derived line resistance was found to be within 20% of offline resistance measurements done using the Kelvin sensing technique.


2018 ◽  
Vol 3 (3) ◽  
pp. 035002 ◽  
Author(s):  
Ethan B Secor

2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000240-000246 ◽  
Author(s):  
K. Swiecinski ◽  
M. Ihle ◽  
R. Jurk ◽  
E. Dietzen ◽  
U. Partsch ◽  
...  

Aerosol jet printing is a rather new technology for the deposition of thick film structures offering high line and space resolution. This offers a high potential for miniaturization for thick film structures. The advantages of this technology could be shown with inks carrying single solid powder (e.g. silver, platinum, ceramic or glass powder). Challenging is printing of solid powder mixtures due to the differences in the aerodynamic properties of different powders. Those differences result in changes of the mixing ratio within the aerosol jet and therefore poor reproducibility in the final film properties is obtained. In this work, thick film resistors consisting of RuO2 with particle size < 1 μm as the conducting phase and different glass powders with particle size around 1 μm as the isolating phase were investigated. One glass had a density rather close to RuO2, the other glass significantly lower. Inks were made from RuO2/glass powder mixtures, a solvent and organic additives. After manufacturing the inks are printed on LTCC and the microstructures of the dried and the fired films were visualized by FIB preparation and SEM. The resistances as well as the temperature coefficients of the resistors were measured and compared to resistor films with an identical solid composition manufactured by conventional screen printing. The results of the obtained resistors are presented and discussed in terms of powder properties, ink dispersion and printing parameters.


Circuit World ◽  
2019 ◽  
Vol 45 (1) ◽  
pp. 9-14
Author(s):  
Jakub Krzeminski ◽  
Bartosz Blicharz ◽  
Andrzej Skalski ◽  
Grzegorz Wroblewski ◽  
Małgorzata Jakubowska ◽  
...  

Purpose Despite almost limitless possibilities of rapid prototyping, the idea of 3D printed fully functional electronic device still has not been fulfilled – the missing point is a highly conductive material suitable for this technique. The purpose of this paper is to present the usage of the photonic curing process for sintering highly conductive paths printed on the polymer substrate. Design/methodology/approach This paper evaluates two photonic curing processes for the conductive network formulation during the additive manufacturing process. Along with the xenon flash sintering for aerosol jet-printed paths, this paper examines rapid infrared sintering for thick-film and direct write techniques. Findings This paper proves that the combination of fused deposition modeling, aerosol jet printing or paste deposition, along with photonic sintering, is suitable to obtain elements with low resistivity of 3,75·10−8 Ωm. Presented outcomes suggest the solution for fabrication of the structural electronics systems for daily-use applications. Originality/value The combination of fused deposition modelling (FDM) and aerosol jet printing or paste deposition used with photonic sintering process can fill the missing point for highly conductive materials for structural electronics.


Sign in / Sign up

Export Citation Format

Share Document