scholarly journals Toric vector bundles: GAGA and Hodge theory

Author(s):  
Jonas Stelzig

Abstract We prove a GAGA-style result for toric vector bundles with smooth base and give an algebraic construction of the Frölicher approximating vector bundle that has recently been introduced by Dan Popovici using analytic techniques. Both results make use of the Rees-bundle construction.

2019 ◽  
Vol 155 (2) ◽  
pp. 289-323 ◽  
Author(s):  
Daniel Greb ◽  
Stefan Kebekus ◽  
Thomas Peternell ◽  
Behrouz Taji

We generalise Simpson’s nonabelian Hodge correspondence to the context of projective varieties with Kawamata log terminal (klt) singularities. The proof relies on a descent theorem for numerically flat vector bundles along birational morphisms. In its simplest form, this theorem asserts that given any klt variety$X$and any resolution of singularities, any vector bundle on the resolution that appears to come from$X$numerically, does indeed come from $X$. Furthermore, and of independent interest, a new restriction theorem for semistable Higgs sheaves defined on the smooth locus of a normal, projective variety is established.


2021 ◽  
Vol 71 (1) ◽  
pp. 199-210
Author(s):  
Aniruddha C. Naolekar

Abstract Let 𝓔 k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle α over X, the Euler class e(α) = 0. We show that if X ∈ 𝓔2n+1 is orientable, then X is a rational homology sphere and π 1(X) is perfect. We also show that 𝓔8 = ∅ and derive additional cohomlogical restrictions on orientable manifolds in 𝓔 k .


2011 ◽  
Vol 84 (2) ◽  
pp. 255-260
Author(s):  
EDOARDO BALLICO ◽  
FRANCESCO MALASPINA

AbstractHere we classify the weakly uniform rank two vector bundles on multiprojective spaces. Moreover, we show that every rank r>2 weakly uniform vector bundle with splitting type a1,1=⋯=ar,s=0 is trivial and every rank r>2 uniform vector bundle with splitting type a1>⋯>ar splits.


Author(s):  
Nils A. Baas ◽  
Marcel Bökstedt ◽  
Tore August Kro

AbstractFor a 2-category 2C we associate a notion of a principal 2C-bundle. For the 2-category of 2-vector spaces, in the sense of M.M. Kapranov and V.A. Voevodsky, this gives the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. Another 2-category of 2-vector spaces has been proposed by J.C. Baez and A.S. Crans. A calculation using our main theorem shows that in this case the theory of principal 2-bundles splits, up to concordance, as two copies of ordinary vector bundle theory. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out to be classified by the Madsen–Weiss spaces.


Author(s):  
Mihajlo Cekić ◽  
Thibault Lefeuvre

Abstract Given a smooth Hermitian vector bundle $\mathcal{E}$ over a closed Riemannian manifold $(M,g)$, we study generic properties of unitary connections $\nabla ^{\mathcal{E}}$ on the vector bundle $\mathcal{E}$. First of all, we show that twisted conformal Killing tensors (CKTs) are generically trivial when $\dim (M) \geq 3$, answering an open question of Guillarmou–Paternain–Salo–Uhlmann [ 14]. In negative curvature, it is known that the existence of twisted CKTs is the only obstruction to solving exactly the twisted cohomological equations, which may appear in various geometric problems such as the study of transparent connections. The main result of this paper says that these equations can be generically solved. As a by-product, we also obtain that the induced connection $\nabla ^{\textrm{End}({\operatorname{{\mathcal{E}}}})}$ on the endomorphism bundle $\textrm{End}({\operatorname{{\mathcal{E}}}})$ has generically trivial CKTs as long as $(M,g)$ has no nontrivial CKTs on its trivial line bundle. Eventually, we show that, under the additional assumption that $(M,g)$ is Anosov (i.e., the geodesic flow is Anosov on the unit tangent bundle), the connections are generically opaque, namely that generically there are no non-trivial subbundles of $\mathcal{E}$ that are preserved by parallel transport along geodesics. The proofs rely on the introduction of a new microlocal property for (pseudo)differential operators called operators of uniform divergence type, and on perturbative arguments from spectral theory (especially on the theory of Pollicott–Ruelle resonances in the Anosov case).


2019 ◽  
Vol 7 ◽  
Author(s):  
A. ASOK ◽  
J. FASEL ◽  
M. J. HOPKINS

Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$, it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Svetlana Ermakova

AbstractIn this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.


2006 ◽  
Vol 13 (1) ◽  
pp. 7-10
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a holomorphically convex complex manifold and Exc(𝑋) ⊆ 𝑋 the union of all positive dimensional compact analytic subsets of 𝑋. We assume that Exc(𝑋) ≠ 𝑋 and 𝑋 is not a Stein manifold. Here we prove the existence of a holomorphic vector bundle 𝐸 on 𝑋 such that is not holomorphically trivial for every open neighborhood 𝑈 of Exc(𝑋) and every integer 𝑚 ≥ 0. Furthermore, we study the existence of holomorphic vector bundles on such a neighborhood 𝑈, which are not extendable across a 2-concave point of ∂(𝑈).


2020 ◽  
Vol 20 (3) ◽  
pp. 401-412
Author(s):  
Alex Küronya ◽  
Yusuf Mustopa

AbstractWe ask when the CM (Castelnuovo–Mumford) regularity of a vector bundle on a projective variety X is numerical, and address the case when X is an abelian variety. We show that the continuous CM-regularity of a semihomogeneous vector bundle on an abelian variety X is a piecewise-constant function of Chern data, and we also use generic vanishing theory to obtain a sharp upper bound for the continuous CM-regularity of any vector bundle on X. From these results we conclude that the continuous CM-regularity of many semihomogeneous bundles — including many Verlinde bundles when X is a Jacobian — is both numerical and extremal.


Sign in / Sign up

Export Citation Format

Share Document