Explicit Computation of a Galois Representation Attached to an Eigenform Over $${\text {SL}}_3$$ from the $${{\text {H}}}_{\acute{\mathrm{e}}\mathrm{t}}^2$$ of a Surface
AbstractWe describe a method to compute mod $$\ell $$ ℓ Galois representations contained in the $${{\text {H}}}_{\acute{\mathrm{e}}\mathrm{t}}^2$$ H e ´ t 2 of surfaces. We apply this method to the case of a representation with values in $${\text {GL}}_3(\mathbb {F}_9)$$ GL 3 ( F 9 ) attached to an eigenform over a congruence subgroup of $${\text {SL}}_3$$ SL 3 . We obtain, in particular, a polynomial with Galois group isomorphic to the simple group $${\text {PSU}}_3(\mathbb {F}_9)$$ PSU 3 ( F 9 ) and ramified at 2 and 3 only.