scholarly journals Artin group injection in the Hecke algebra for right-angled groups

Author(s):  
Paolo Sentinelli
Keyword(s):  
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Charles F. Dunkl

In a preceding paper the theory of nonsymmetric Macdonald polynomials taking values in modules of the Hecke algebra of type A (Dunkl and Luque SLC 2012) was applied to such modules consisting of polynomials in anti-commuting variables, to define nonsymmetric Macdonald superpolynomials. These polynomials depend on two parameters q,t and are defined by means of a Yang–Baxter graph. The present paper determines the values of a subclass of the polynomials at the special points 1,t,t2,… or 1,t−1,t−2,…. The arguments use induction on the degree and computations with products of generators of the Hecke algebra. The resulting formulas involve q,t-hook products. Evaluations are also found for Macdonald superpolynomials having restricted symmetry and antisymmetry properties.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Enrique Miguel Barquinero ◽  
Lorenzo Ruffoni ◽  
Kaidi Ye

Abstract We study Artin kernels, i.e. kernels of discrete characters of right-angled Artin groups, and we show that they decompose as graphs of groups in a way that can be explicitly computed from the underlying graph. When the underlying graph is chordal, we show that every such subgroup either surjects to an infinitely generated free group or is a generalized Baumslag–Solitar group of variable rank. In particular, for block graphs (e.g. trees), we obtain an explicit rank formula and discuss some features of the space of fibrations of the associated right-angled Artin group.


2005 ◽  
Vol 04 (06) ◽  
pp. 631-644
Author(s):  
KENICHI SHINODA ◽  
ILKNUR TULUNAY
Keyword(s):  

In this article, we explicitly calculated the values of the representations of the Hecke algebra [Formula: see text], associated with a Gelfand–Graev character of GL 4(q), at some of the standard basis elements.


2000 ◽  
Vol 233 (2) ◽  
pp. 594-613 ◽  
Author(s):  
Ron M. Adin ◽  
Alexander Postnikov ◽  
Yuval Roichman

Author(s):  
Arye Juhász

It is conjectured that an irreducible Artin group which is of infinite type has trivial center. The conjecture is known to be true for two-dimensional Artin groups and for a few other types of Artin groups. In this work, we show that the conjecture holds true for Artin groups which satisfy a condition stronger than being of infinite type. We use small cancellation theory of relative presentations.


Sign in / Sign up

Export Citation Format

Share Document