artin group
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Nicolas Vaskou
Keyword(s):  

AbstractIn this paper, we show that every irreducible 2-dimensional Artin group $$A_{\Gamma }$$ A Γ of rank at least 3 is acylindrically hyperbolic. We do this by studying the action of $$A_\Gamma $$ A Γ on its modified Deligne complex. Along the way, we prove results of independent interests on the geometry of links of this complex.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Eduard Schesler

Abstract We introduce a new invariant of finitely generated groups, the ambiguity function, and we prove that every finitely generated acylindrically hyperbolic group has a linearly bounded ambiguity function. We use this result to prove that the relative exponential growth rate lim n → ∞ ⁡ | B H X ⁢ ( n ) | n \lim_{n\to\infty}\sqrt[n]{\lvert\vphantom{1_{1}}{B^{X}_{H}(n)}\rvert} of a subgroup 𝐻 of a finitely generated acylindrically hyperbolic group 𝐺 exists with respect to every finite generating set 𝑋 of 𝐺 if 𝐻 contains a loxodromic element of 𝐺. Further, we prove that the relative exponential growth rate of every finitely generated subgroup 𝐻 of a right-angled Artin group A Γ A_{\Gamma} exists with respect to every finite generating set of A Γ A_{\Gamma} .


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaolei Wu
Keyword(s):  

Abstract We provide two simple proofs of the fact that even Artin groups of FC-type are poly-free which was recently established by R. Blasco-Garcia, C. Martínez-Pérez and L. Paris. More generally, let Γ be a finite simplicial graph with all edges labelled by positive even integers, and let A Γ A_{\Gamma} be its associated Artin group; our new proof implies that if A T A_{T} is poly-free (resp. normally poly-free) for every clique 𝑇 in Γ, then A Γ A_{\Gamma} is poly-free (resp. normally poly-free). We prove similar results regarding the Farrell–Jones Conjecture for even Artin groups. In particular, we show that if A Γ A_{\Gamma} is an even Artin group such that each clique in Γ either has at most three vertices, has all of its labels at least 6, or is the join of these two types of cliques (the edges connecting the cliques are all labelled by 2), then A Γ A_{\Gamma} satisfies the Farrell–Jones Conjecture. In addition, our methods enable us to obtain results for general Artin groups.


Author(s):  
M. Hull

We show that if a right-angled Artin group [Formula: see text] has a non-trivial, minimal action on a tree [Formula: see text] with more than two ends, then [Formula: see text] contains a separating subgraph [Formula: see text] such that [Formula: see text] stabilizes an edge in [Formula: see text].


Author(s):  
Arye Juhász

It is conjectured that an irreducible Artin group which is of infinite type has trivial center. The conjecture is known to be true for two-dimensional Artin groups and for a few other types of Artin groups. In this work, we show that the conjecture holds true for Artin groups which satisfy a condition stronger than being of infinite type. We use small cancellation theory of relative presentations.


Author(s):  
Martín Axel Blufstein ◽  
Elías Gabriel Minian ◽  
Iván Sadofschi Costa

We present a metric condition $\TTMetric$ which describes the geometry of classical small cancellation groups and applies also to other known classes of groups such as two-dimensional Artin groups. We prove that presentations satisfying condition $\TTMetric$ are diagrammatically reducible in the sense of Sieradski and Gersten. In particular, we deduce that the standard presentation of an Artin group is aspherical if and only if it is diagrammatically reducible. We show that, under some extra hypotheses, $\TTMetric$ -groups have quadratic Dehn functions and solvable conjugacy problem. In the spirit of Greendlinger's lemma, we prove that if a presentation P = 〈X| R〉 of group G satisfies conditions $\TTMetric -C'(\frac {1}{2})$ , the length of any nontrivial word in the free group generated by X representing the trivial element in G is at least that of the shortest relator. We also introduce a strict metric condition $\TTMetricStrict$ , which implies hyperbolicity.


Author(s):  
Michael Ben-Zvi ◽  
Robert Kropholler
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alberto Cassella ◽  
Claudio Quadrelli

AbstractLet 𝔽 be a finite field. We prove that the cohomology algebra H^{\bullet}(G_{\Gamma},\mathbb{F}) with coefficients in 𝔽 of a right-angled Artin group G_{\Gamma} is a strongly Koszul algebra for every finite graph Γ. Moreover, H^{\bullet}(G_{\Gamma},\mathbb{F}) is a universally Koszul algebra if, and only if, the graph Γ associated to the group G_{\Gamma} has the diagonal property. From this, we obtain several new examples of pro-𝑝 groups, for a prime number 𝑝, whose continuous cochain cohomology algebra with coefficients in the field of 𝑝 elements is strongly and universally (or strongly and non-universally) Koszul. This provides new support to a conjecture on Galois cohomology of maximal pro-𝑝 Galois groups of fields formulated by J. Mináč et al.


2020 ◽  
Vol 32 (2) ◽  
pp. 279-286
Author(s):  
Ignat Soroko

AbstractBy analyzing known presentations of the pure mapping groups of orientable surfaces of genus g with b boundary components and n punctures in the cases when {g=0} with b and n arbitrary, and when {g=1} and {b+n} is at most 3, we show that these groups are isomorphic to some groups related to the braid groups and the Artin group of type {D_{4}}. As a corollary, we conclude that the pure mapping class groups are linear in these cases.


Sign in / Sign up

Export Citation Format

Share Document