scholarly journals Filtrations on Springer fiber cohomology and Kostka polynomials

2017 ◽  
Vol 108 (3) ◽  
pp. 679-698
Author(s):  
Gwyn Bellamy ◽  
Travis Schedler
1998 ◽  
Vol 50 (3) ◽  
pp. 525-537 ◽  
Author(s):  
William Brockman ◽  
Mark Haiman

AbstractWe study the coordinate rings of scheme-theoretic intersections of nilpotent orbit closures with the diagonal matrices. Here μ′ gives the Jordan block structure of the nilpotent matrix. de Concini and Procesi [5] proved a conjecture of Kraft [12] that these rings are isomorphic to the cohomology rings of the varieties constructed by Springer [22, 23]. The famous q-Kostka polynomial is the Hilbert series for the multiplicity of the irreducible symmetric group representation indexed by λ in the ring . Lascoux and Schützenberger [15, 13] gave combinatorially a decomposition of as a sum of “atomic” polynomials with non-negative integer coefficients, and Lascoux proposed a corresponding decomposition in the cohomology model.Our work provides a geometric interpretation of the atomic decomposition. The Frobenius-splitting results of Mehta and van der Kallen [19] imply a direct-sum decomposition of the ideals of nilpotent orbit closures, arising from the inclusions of the corresponding sets. We carry out the restriction to the diagonal using a recent theorem of Broer [3]. This gives a direct-sum decomposition of the ideals yielding the , and a new proof of the atomic decomposition of the q-Kostka polynomials.


2017 ◽  
Vol 39 (3) ◽  
pp. 743-776 ◽  
Author(s):  
Shiyuan LIU ◽  
Toshiaki SHOJI
Keyword(s):  

1995 ◽  
Vol 123 (10) ◽  
pp. 2961-2961
Author(s):  
Susanna Fishel
Keyword(s):  

1999 ◽  
Vol 202 (2) ◽  
pp. 359-401 ◽  
Author(s):  
Anne Schilling ◽  
S. Ole Warnaar

10.37236/1264 ◽  
1995 ◽  
Vol 3 (2) ◽  
Author(s):  
Richard P. Stanley

For every finite graded poset $P$ with $\hat{0}$ and $\hat{1}$ we associate a certain formal power series $F_P(x) = F_P(x_1,x_2,\dots)$ which encodes the flag $f$-vector (or flag $h$-vector) of $P$. A relative version $F_{P/\Gamma}$ is also defined, where $\Gamma$ is a subcomplex of the order complex of $P$. We are interested in the situation where $F_P$ or $F_{P/\Gamma}$ is a symmetric function of $x_1,x_2,\dots$. When $F_P$ or $F_{P/\Gamma}$ is symmetric we consider its expansion in terms of various symmetric function bases, especially the Schur functions. For a class of lattices called $q$-primary lattices the Schur function coefficients are just values of Kostka polynomials at the prime power $q$, thus giving in effect a simple new definition of Kostka polynomials in terms of symmetric functions. We extend the theory of lexicographically shellable posets to the relative case in order to show that some examples $(P,\Gamma)$ are relative Cohen-Macaulay complexes. Some connections with the representation theory of the symmetric group and its Hecke algebra are also discussed.


Author(s):  
Zongbin Chen

Abstract We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur–Kottwitz reduction and by the Harder–Narasimhan reduction. A comparison of results obtained from these two approaches gives recurrence relations between the number of rational points on the fundamental domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate Arthur’s weighted orbital integrals for the groups ${\textrm {GL}}_{2}$ and ${\textrm {GL}}_{3}$ .


Sign in / Sign up

Export Citation Format

Share Document