orbit closures
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Corina Ciobotaru ◽  
Vladimir Finkelshtein ◽  
Cagri Sert

AbstractLet G be a large group acting on a biregular tree T and $$\Gamma \le G$$ Γ ≤ G a geometrically finite lattice. In an earlier work, the authors classified orbit closures of the action of the horospherical subgroups on $$G/\Gamma $$ G / Γ . In this article we show that there is no escape of mass and use this to prove that, in fact, dense orbits equidistribute to the Haar measure on $$G/\Gamma $$ G / Γ . On the other hand, we show that new dynamical phenomena for horospherical actions appear on quotients by non-geometrically finite lattices: we give examples of non-geometrically finite lattices where an escape of mass phenomenon occurs and where the orbital averages along a Følner sequence do not converge. In the last part, as a by-product of our methods, we show that projections to $$\Gamma \backslash T$$ Γ \ T of the uniform distributions on large spheres in the tree T converge to a natural probability measure on $$\Gamma \backslash T$$ Γ \ T . Finally, we apply this equidistribution result to a lattice point counting problem to obtain counting asymptotics with exponential error term.


Author(s):  
Ryan Kinser ◽  
András C. Lőrincz

Abstract We study the behaviour of representation varieties of quivers with relations under the operation of node splitting. We show how splitting a node gives a correspondence between certain closed subvarieties of representation varieties for different algebras, which preserves properties like normality or having rational singularities. Furthermore, we describe how the defining equations of such closed subvarieties change under the correspondence. By working in the ‘relative setting’ (splitting one node at a time), we demonstrate that there are many nonhereditary algebras whose irreducible components of representation varieties are all normal with rational singularities. We also obtain explicit generators of the prime defining ideals of these irreducible components. This class contains all radical square zero algebras, but also many others, as illustrated by examples throughout the paper. We also show that this is true when irreducible components are replaced by orbit closures, for a more restrictive class of algebras. Lastly, we provide applications to decompositions of moduli spaces of semistable representations of certain algebras.


Author(s):  
Matthew Pressland ◽  
Julia Sauter

AbstractWe show that endomorphism rings of cogenerators in the module category of a finite-dimensional algebra A admit a canonical tilting module, whose tilted algebra B is related to A by a recollement. Let M be a gen-finite A-module, meaning there are only finitely many indecomposable modules generated by M. Using the canonical tilts of endomorphism algebras of suitable cogenerators associated to M, and the resulting recollements, we construct desingularisations of the orbit closure and quiver Grassmannians of M, thus generalising all results from previous work of Crawley-Boevey and the second author in 2017. We provide dual versions of the key results, in order to also treat cogen-finite modules.


Author(s):  
Eunjeong Lee ◽  
Mikiya Masuda ◽  
Seonjeong Park ◽  
Jongbaek Song

The closure of a generic torus orbit in the flag variety G / B G/B of type  A A is known to be a permutohedral variety, and its Poincaré polynomial agrees with the Eulerian polynomial. In this paper, we study the Poincaré polynomial of a generic torus orbit closure in a Schubert variety in  G / B G/B . When the generic torus orbit closure in a Schubert variety is smooth, its Poincaré polynomial is known to agree with a certain generalization of the Eulerian polynomial. We extend this result to an arbitrary generic torus orbit closure which is not necessarily smooth.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Antoine Bourget ◽  
Julius F. Grimminger ◽  
Amihay Hanany ◽  
Rudolph Kalveks ◽  
Marcus Sperling ◽  
...  

Abstract For any gauge theory, there may be a subgroup of the gauge group which acts trivially on the matter content. While many physical observables are not sensitive to this fact, the choice of the precise gauge group becomes crucial when the magnetic lattice of the theory is considered. This question is addressed in the context of Coulomb branches for 3d $$ \mathcal{N} $$ N = 4 quiver gauge theories, which are moduli spaces of dressed monopole operators. We compute the Coulomb branch Hilbert series of many unitary-orthosymplectic quivers for different choices of gauge groups, including diagonal quotients of the product gauge group of individual factors, where the quotient is by a trivially acting subgroup. Choosing different such diagonal groups results in distinct Coulomb branches, related as orbifolds. Examples include nilpotent orbit closures of the exceptional E-type algebras and magnetic quivers that arise from brane physics. This includes Higgs branches of theories with 8 supercharges in dimensions 4, 5, and 6. A crucial ingredient in the calculation of exact refined Hilbert series is the alternative construction of unframed magnetic quivers from resolved Slodowy slices, whose Hilbert series can be derived from Hall-Littlewood polynomials.


2020 ◽  
Vol 372 ◽  
pp. 107299
Author(s):  
Eric Marberg ◽  
Brendan Pawlowski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document