scholarly journals Analysis of operational issues in hydrothermal liquefaction and supercritical water gasification processes: a review

Author(s):  
Niloufar Ghavami ◽  
Karhan Özdenkçi ◽  
Gabriel Salierno ◽  
Margareta Björklund-Sänkiaho ◽  
Cataldo De Blasio

AbstractBiomass is often referred to as a carbon–neutral energy source, and it has a role in reducing fossil fuel depletion. In addition, biomass can be converted efficiently into various forms of biofuels. The biomass conversion processes involve several thermochemical, biochemical, and hydrothermal methods for biomass treatment integration. The most common conversion routes to produce biofuels include pyrolysis and gasification processes. On the other hand, supercritical water gasification (SCWG) and hydrothermal liquefaction (HTL) are best suitable for converting biomass and waste with high moisture content. Despite promising efficiencies, SCWG and HTL processes introduce operational issues as obstacles to the industrialization of these technologies. The issues include process safety aspects due to operation conditions, plugging due to solid deposition, corrosion, pumpability of feedstock, catalyst sintering and deactivation, and high production costs. The methods to address these issues include various reactor configurations to avoid plugging and optimizing process conditions to minimize other issues. However, there are only a few studies investigating the operational issues as the main scope, and reviews are seldomly available in this regard. Therefore, further research is required to address operational problems. This study reviews the main operational problems in SCWG and HTL. The objective of this study is to enhance the industrialization of these processes by investigating the operational issues and the potential solutions, i.e., contributing to the elimination of the obstacles. A comprehensive study on the operational issues provides a holistic overview of the biomass conversion technologies and biorefinery concepts to promote the industrialization of SCWG and HTL.

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120288
Author(s):  
Ya-Qi Shan ◽  
Lin-Xin Yin ◽  
Oraléou Sangué Djandja ◽  
Zhi-Cong Wang ◽  
Pei-Gao Duan

2021 ◽  
Vol 11 (1) ◽  
pp. 111-132
Author(s):  
Muhammad Usman ◽  
Shuo Cheng ◽  
Jeffrey Scott Cross

Many tropical islands, including Aruba, Seychelles, Mauritius, and Pacific Island countries, are entirely dependent on importing fossil fuels to meet their energy demands. Due to global warming, improving energy use efficiency and developing regionally available renewable energy resources are necessary to reduce carbon emissions. This review analyzed and identified biomass feedstocks to produce liquid biofuels targeting tropical islands, particularly focusing on Hawaii as a case study. Transportation and energy generation sectors consume 25.5% and 11.6%, respectively, of Hawaii's imported fossil fuels. Various nonedible feedstocks with information on their availability, production, and average yields of oils, fiber, sugars, and lipid content for liquid biofuels production are identified to add value to the total energy mix. The available biomass conversion technologies and production costs are summarized. In addition, a section on potentially using sewage sludge to produce biodiesel is also included. Based on a comparative analysis of kamani, croton, pongamia, jatropha, energycane, Leucaena hybrid, gliricidia, and eucalyptus feedstock resources, this study proposes that Hawaii and other similar tropical regions can potentially benefit from growing and producing economical liquid biofuels locally, especially for the transportation and electricity generation sectors


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4553 ◽  
Author(s):  
Ane Caroline Pereira Borges ◽  
Jude Azubuike Onwudili ◽  
Heloysa Andrade ◽  
Carine Alves ◽  
Andrew Ingram ◽  
...  

Nickel iron oxide (NiFe2O4) catalyst was prepared by the combustion reaction method and characterized by XRD, N2 adsorption/desorption, thermogravimetric analysis (TG), and temperature programmed reduction (TPR). The catalyst presented a mixture of oxides, including the NiFe2O4 spinel and specific surface area of 32.4 m2 g−1. The effect of NiFe2O4 catalyst on the supercritical water gasification (SCWG) of eucalyptus wood chips was studied in a batch reactor at 450 and 500 °C without catalyst and with 1.0 g and 2.0 g of catalyst and 2.0 g of biomass for 60 min. In addition, the recyclability of the catalyst under the operating conditions was also tested using recovered and recalcined catalysts over three reaction cycles. The highest amount of H2 was 25 mol% obtained at 450 °C, using 2 g of NiFe2O4 catalyst. The H2 mol% was enhanced by 45% when compared to the non-catalytic test, showing the catalytic activity of NiFe2O4 catalyst in the WGS and the steam reforming reactions. After the third reaction cycle, the results of XRD demonstrated formation of coke which caused the deactivation of the NiFe2O4 and consequently, a 13.6% reduction in H2 mol% and a 5.6% reduction in biomass conversion.


Author(s):  
Christopher Hunston ◽  
David Baudouin ◽  
Mohamed Tarik ◽  
Oliver Kröcher ◽  
Frédéric Vogel

Ru loss mechanisms were investigated for the first time in SCWG by ICP-MS. Ru leaching at steady state was very low, close to thermodynamic models. Abrupt changes in process conditions must be avoided to prevent catalyst damage and higher Ru loss.


2021 ◽  
Vol 11 (1) ◽  
pp. 111-132
Author(s):  
Muhammad Usman ◽  
Shuo Cheng ◽  
Jeffrey Scott Cross

Many tropical islands, including Aruba, Seychelles, Mauritius, and Pacific Island countries, are entirely dependent on importing fossil fuels to meet their energy demands. Due to global warming, improving energy use efficiency and developing regionally available renewable energy resources are necessary to reduce carbon emissions. This review analyzed and identified biomass feedstocks to produce liquid biofuels targeting tropical islands, particularly focusing on Hawaii as a case study. Transportation and energy generation sectors consume 25.5% and 11.6%, respectively, of Hawaii's imported fossil fuels. Various nonedible feedstocks with information on their availability, production, and average yields of oils, fiber, sugars, and lipid content for liquid biofuels production are identified to add value to the total energy mix. The available biomass conversion technologies and production costs are summarized. In addition, a section on potentially using sewage sludge to produce biodiesel is also included. Based on a comparative analysis of kamani, croton, pongamia, jatropha, energycane, Leucaena hybrid, gliricidia, and eucalyptus feedstock resources, this study proposes that Hawaii and other similar tropical regions can potentially benefit from growing and producing economical liquid biofuels locally, especially for the transportation and electricity generation sectors


2017 ◽  
Vol 33 (3) ◽  
Author(s):  
Pau Casademont ◽  
M. Belén García-Jarana ◽  
Jezabel Sánchez-Oneto ◽  
Juan Ramón Portela ◽  
Enrique J. Martínez de la Ossa

AbstractSupercritical water gasification (SCWG) is a very recent technology that allows conversion of organic wastewaters into a fuel gas with a high content of hydrogen and light hydrocarbons. SCWG involves the treatment of organic compounds at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). This hydrothermal process, normally operated at temperatures from 400 to 650°C and pressures from 250 to 350 bar, produces a gas effluent with a high hydrogen content. SCWG is considered a promising technology for the efficient conversion of organic wastewaters, mainly wet biomass, into fuel gas. This technology has received extensive worldwide attention, and many research groups have studied the effect of operation conditions, reaction mechanisms, kinetics, etc. There are some recent reviews about the research works carried out in the last decades, but there is no information or analysis of almost 100 patents registered in relation with this new technology. A revision of the current status of SCWG patents and technologies has been completed based on the Espacenet patent database. The objective of this revision was to set down the new perspectives toward the improvement of this technology efficiency. Patents have been published with regard to process or device improvements as well as to the use of different catalysts. More than 71% of these patents were published since 2009, and a substantial climb in the number of patents on SCWG is expected in the coming years. One of the most important aspects where research is particularly interesting if the integration of renewable energy recovery systems with SCWG processes.


Sign in / Sign up

Export Citation Format

Share Document