Modified sodium molybdate as an efficient high yielding heterogeneous catalyst for biodiesel from Ghanaian indigenous Camelina sativa as a non-edible resource
AbstractSodium molybdate (Na2MoO4) has been synthesized and investigated as a heterogeneous solid catalyst for biodiesel from Camelina sativa seed oil. Transesterification reactions occurred under atmospheric conditions with relatively, low temperature short reaction time and normal pressure. The prepared catalyst was characterised by means of SEM, TGA, UV, XRD and FTIR. The properties of the biodiesel were compared with international standards. The transesterification reaction was very efficient with the optimum yield higher than 95% at methanol to oil molar ratio of 17:1, catalyst amount of 6%, reaction temperature of 60 °C and reaction time of 2.5 h. The molybdate complex had a high Lewis acidity and most certainly act as alcohol O–H bond leading to a transient species which has high nucleophilic character. The catalyst was easily recovered and after being washed for three times, showed capacity of recyclability for another catalytic reaction of five cycles with similar activity. The properties of the biodiesel were comparable to international standards.