Expression of soluble T-cell receptor fragments derived from a T-cell clone associated with murine collagen-induced arthritis

1994 ◽  
Vol 43 (1-2) ◽  
pp. 139-141 ◽  
Author(s):  
Mihai Ciubotaru ◽  
E. Sally Ward
1992 ◽  
Vol 22 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Tan Yan ◽  
Harald Burkhardt ◽  
Thomas Ritter ◽  
Barbara Bröker ◽  
Karl Heinz Mann ◽  
...  

Immunology ◽  
2007 ◽  
Vol 120 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Shereen Sabet ◽  
Maria-Teresa Ochoa ◽  
Peter A. Sieling ◽  
Thomas H. Rea ◽  
Robert L. Modlin

1994 ◽  
Vol 180 (3) ◽  
pp. 1171-1176 ◽  
Author(s):  
P Dellabona ◽  
E Padovan ◽  
G Casorati ◽  
M Brockhaus ◽  
A Lanzavecchia

The T cell receptor (TCR)-alpha/beta CD4-8- (double negative, DN) T cell subset is characterized by an oligoclonal repertoire and a restricted V gene usage. By immunizing mice with a DN T cell clone we generated two monoclonal antibodies (mAbs) against V alpha 24 and V beta 11, which have been reported to be preferentially expressed in DN T cells. Using these antibodies, we could investigate the expression and pairing of these V alpha and V beta gene products among different T cell subsets. V alpha 24 is rarely expressed among CD4+ and especially CD8+ T cells. In these cases it is rearranged to different J alpha segments, carries N nucleotides, and pairs with different V beta. Remarkably, V alpha 24 is frequently expressed among DN T cells and is always present as an invariant rearrangement with J alpha Q, without N region diversity. This invariant V alpha 24 chain is always paired to V beta 11. This unique V alpha 24-J alpha Q/V beta 11 TCR was found in expanded DN clones from all the individuals tested. These findings suggest that the frequent occurrence of cells carrying this invariant TCR is due to peripheral expansion of rare clones after recognition of a nonpolymorphic ligand.


Blood ◽  
2005 ◽  
Vol 106 (8) ◽  
pp. 2769-2780 ◽  
Author(s):  
Marcin W. Wlodarski ◽  
Christine O'Keefe ◽  
Evan C. Howe ◽  
Antonio M. Risitano ◽  
Alexander Rodriguez ◽  
...  

AbstractT-cell large granular lymphocyte (T-LGL) leukemia is a clonal lymphoproliferation of cytotoxic T cells (CTLs) associated with cytopenias. T-LGL proliferation seems to be triggered/sustained by antigenic drive; it is likely that hematopoietic progenitors are the targets in this process. The antigen-specific portion of the T-cell receptor (TCR), the variable beta (VB)–chain complementarity-determining region 3 (CDR3), can serve as a molecular signature (clonotype) of a T-cell clone. We hypothesized that clonal CTL proliferation develops not randomly but in the context of an autoimmune response. We identified the clonotypic sequence of T-LGL clones in 60 patients, including 56 with known T-LGL and 4 with unspecified neutropenia. Our method also allowed for the measurement of clonal frequencies; a decrease in or loss of the pathogenic clonotype and restoration of the TCR repertoire was found after hematologic remission. We identified 2 patients with identical immunodominant CDR3 sequence. Moreover, we found similarity between multiple immunodominant clonotypes and codominant as well as a nonexpanded, “supporting” clonotypes. The data suggest a nonrandom clonal selection in T-LGL, possibly driven by a common antigen. In contrast, the physiologic clonal CTL repertoire is highly diverse and we were not able to detect any significant clonal sharing in 26 healthy controls.


1996 ◽  
Vol 184 (5) ◽  
pp. 1755-1768 ◽  
Author(s):  
U McKeever ◽  
S Khandekar ◽  
J Newcomb ◽  
J Naylor ◽  
P Gregory ◽  
...  

The BDC 2.5 T cell clone is specific for pancreatic beta-cell antigen presented by I-Ag7, and greatly accelerates diabetes when injected into 10-21-d-old nonobese diabetic (NOD) mice. The BDC 2.5 T cell receptor (TCR) has been solubilized as a TCR-IgG1 chimeric protein. All NOD mice immunized against BDC 2.5 TCR-IgG1 produced antibodies recognizing TCR C alpha/C beta epitopes that were inaccessible on the T cell surface. 56% of the mice produced antibodies against the BDC 2.5 clonotype that specifically blocked antigen activation of BDC 2.5 cells. We have used the adoptive transfer model of diabetes to demonstrate that maternal immunization with soluble TCR protects young mice from diabetes induced by the BDC 2.5 T cell clone.


Immunology ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 383-387 ◽  
Author(s):  
L. L. DELEHANTY ◽  
J. A. PAYNE ◽  
S. N. FARROW ◽  
R. BROWN ◽  
B. R. CHAMPION

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3533-3533
Author(s):  
Holger Krönig ◽  
Kathrin Hofer ◽  
Daniel Sommermeyer ◽  
Christian Peschel ◽  
Wolfgang Uckert ◽  
...  

Abstract The Cancer Testis (CT) antigen NY-ESO-1 is one of the most immunogenic cancer antigens eliciting strong humoral and cellular immune responses in tumor patients and therefore it is a promising candidate antigen for successful adoptive T cell transfer. The aim of our studies is the transfer of autologous T cells re-directed towards CT antigens by T cell receptor (TCR) gene transfer. The first precondition for genetic transfer of CT-Ag-specific TCRs is the availability of tumor-reactive CD4+ and CD8+ T cell clones that express a CT-Ag-specific TCR. Therefore, we generated the autologous CD8+ T cell clone ThP2 through stimulating HLA-A2.1− PBMCs with autologous HLA-A2+DCs loaded with synthetic NY-ESO-1157–165. After two restimulations, FACS-sorting and cloning, the T cell line specifically recognized the NY-ESO-1157–165 peptide and also specifically lysed NY-ESO-1157–165 expressing tumor cells. In addition, we generated NY-ESO-1 specific T helper1 clones from HLA-DR1+ and HLA-DR4+ healthy donors by stimulation of CD4+ T cells with autologous dendritic cells (DC) pulsed with the NY-ESO-187–111 peptide. The specificity of CD4+ T helper cell clones was determined by proliferation assays and IFN gamma ELISPOT through screening with the NY-ESO-187–111 peptide. By limiting dilution of the NYESO- 1-specific T cell populations we succeeded to isolate CD4+ T cell clones, which recognized NY-ESO-1-pulsed target cells and DCs pulsed with NY-ESO-1 protein. The second precondition for TCR gene transfer is the availability of efficient vector systems. Using vectors based upon mouse myelo-proliferative sarcoma virus (MPSV), it was possible to achieve a high transgene expression in the TCR-transduced T cells. Therefore, we cloned the TCR of the HL-A2-restricted NY-ESO-1-specific CTL clone ThP2 in the retroviral vector and documented the correct expression of the TCR-chains using peptide/HLA-multimers following retroviral transduction of peripheral PBMCs. Moreover, the NY-ESO-1 specific lysis of HLA-A2+ NY-ESO-1+ tumor cell lines after transduction in primary T cells was as well effective as the primary T cell clone. Because the expression of naive transgenic T cell receptors in recipient human T cells is often insufficient to achieve highly reactive T cell bulks we modified the TCR of the ThP2 CTL clone by, murinisation, codon optimalization or by introducing cysteins into the constant regions. Afterwards we compared the expression efficiency of the three different modifications on naive T cells by tetramer-staining. We were able to show that codon optimalization leads to an increase in the expression levels of the transgenic TCRs in human CD8+ T cells. The next step is the development of T cell transfer regiments, which are based on class-II-restricted TCR-transduced T cells.


Sign in / Sign up

Export Citation Format

Share Document